
OSCATOSCAT

Building: LIBRARYBuilding: LIBRARY

Documentation In EnglishDocumentation In English

Version 1.00

Chapter

Table of Contents

 1. Legal.. 5
1.1. Disclaimer... 5
1.2. License Terms... 5

1.3. Registered trademarks..5
1.4. Intended Use...6

1.5. Other.. 6

 2. Introduction.. 7
2.1. Objectives... 7

2.2. Conventions.. 8
2.3. Test environment.. 9

2.4. Releases... 10
2.5. Support... 10

 3. Others.. 11
3.1. BUILDING_VERSION...11

 4. Actuators.. 12
4.1. ACTUATOR_2P... 12

4.2. ACTUATOR_3P... 13
4.3. ACTUATOR_A... 15

4.4. ACTUATOR_COIL..16
4.5. ACTUATOR_PUMP.. 16

4.6. ACTUATOR_UD.. 17
4.7. AUTORUN.. 19

 5. Heating, Ventilation, Air Condition...22
5.1. AIR_DENSITY... 22
5.2. AIR_ENTHALPY.. 22

5.3. BOILER.. 23
5.4. BURNER.. 25

5.5. DEW_CON... 29
5.6. DEW_RH.. 29

5.7. DEW_TEMP.. 31
5.8. HEAT_INDEX.. 32

5.9. HEAT_METER... 32
5.10. HEAT _TEMP.. 33

2 Version 1.00

Chapter

5.11. LEGIONELLA.. 35
5.12. SDD... 38

5.13. SDD_NH3.. 39
5.14. SDT_NH3... 39

5.15. T_AVG24... 39
5.16. TANK_LEVEL.. 41

5.17. TANK_VOL1... 42
5.18. TANK_VOL2... 42

5.19. TEMP_EXT... 43
5.20. WATER_CP... 45

5.21. WATER_DENSITY... 45
5.22. WATER_ENTHALPY... 46

5.23. WCT.. 46

 6. Electrical Engineering.. 47
6.1. CLICK.. 47

6.2. CLICK_MODE... 49
6.3. DEBOUNCE.. 49

6.4. DIMM_2... 50
6.5. DIMM_I.. 52

6.6. F_LAMP... 54
6.7. PULSE_LENGTH... 56

6.8. PULSE_T.. 56
6.9. SW_RECONFIG.. 57

6.10. SWITCH_I... 58
6.11. SWITCH_X... 59

6.12. TIMER _ 1.. 60
6.13. TIMER_2.. 60

6.14. TIMER_EVENT_DECODE... 62
6.15. TIMER_EXT.. 63

6.16. TIMER_P4.. 65

 7. Blind Modules...72
7.1. Introduction.. 72

7.2. BLIND_ACTUATOR... 74
7.3. BLIND_CONTROL... 75

7.4. BLIND_CONTROL_S... 78
7.5. BLIND_INPUT... 80

7.6. BLIND_NIGHT.. 84
7.7. BLIND_SCENE.. 87

7.8. BLIND_SECURITY... 89
7.9. BLIND_SET.. 91

7.10. BLIND_SHADE... 93
7.11. BLIND_SHADE_S.. 96

3 Version 1.00

Chapter

4 Version 1.00

Chapter 1. Legal

 1. Legal

1.1. Disclaimer

The software modules included in the OSCAT library are offered with the intent to
serve as a template and guideline for software development for PLC according to
IEC61131-3. A functional guarantee is not offered by the programmers and is
excluded explicitly. As the software modules included in the library are provided free
of charge, no warranty is provided to the extent permitted by law. As far as it is not
explicitly arranged in written form, the copyright owners and/ or third parties provide
the software modules “as is”, without any warranty, explicit or implicit, including, but
not limited to; market maturity or usability for a particular purpose. The full risk and
full responsibility concerning quality, absence of errors and performance of the
software module lie with the user. Should the library, or parts of it, turn out to contain
errors, the costs for service, repair and/or correction must be assumed by the user.
Should the entire library, or parts of it, be used to create user software, or be applied
in software projects, the user is liable for the absence of errors, performance and
quality of the application. Liability of OSCAT is explicitly ruled out.

The OSCAT library user has to take care, through suitable tests, releases and quality
assurance measures, that possible errors in the OSCAT library cannot cause
damage. The present license agreements and disclaimers are equally valid for the
software library, and the descriptions and explanations given in this manual, even
when this is not mentioned explicitly.

1.2. License Terms

The use of the OSCAT library is free of charge and it can be utilized for private or
business purposes. Distribution of the library is expressly encouraged; however, this
has to be free of charge and contain a reference to our webpage WWW.OSCAT.DE.
If the library is offered in electronic form for download or distributed on data carriers,
it has to be ensured that a clearly visible reference to OSCAT and a link to
WWW.OSCAT.DE are included accordingly.

1.3. Registered trademarks

All the trademarks used in this description are applied without reference to their
registration or owner. The existence of such rights can therefore not be ruled out. The
used trademarks are the property of their respective owners. Therefore, commercial
use of the description, or excerpts of it, is not permitted.

5 Version 1.00

http://WWW.OSCAT.DE/
http://WWW.OSCAT.DE/

Chapter 1. Legal

1.4. Intended Use

The software modules included in the OSCAT library and described in this
documentation were exclusively developed for professionals who have had training in
PLC. The users are responsible for complying with all applicable standards and
regulations which come into effect with the use of the software modules. OSCAT
does not refer to these standards or regulations in either the manual or the software
itself.

1.5. Other

All legally binding regulations can be found solely in chapter 1 of the user manual.
Deduction or acquisition of legal claims based on the content of the manual, apart
from the provisions stipulated in chapter 1, is completely ruled out.

6 Version 1.00

Chapter 2. Introduction

 2. Introduction

2.1. Objectives

OSCAT is for " Open Source Community for Automation Technology ".

OSCAT created a Open Source Library referenced to the IEC61131-3 stan-
dard, which can be dispensed with vendor-specifc functions and therefore
ported to all IEC61131-3-compatible programmable logic controllers. Alt-
hough trends for PLC in the use of vendor-specifc libraries are usually sol-
ved efciently and these libraries are also provided in part free of charge,
there are still major disadvantages of using it:

1. The libraries of almost all manufacturers are being protected and
the Source Code is not freely accessible, which is in case of a error
and correction of the error extremely difcult, often impossible.

2. The graphic development of programs with vendor-specifc libraries
can quickly become confusing, inefcient and error-prone, because
existing functions can not be adjusted and expanded to the actual
needs. The Source codes are not available.

3. A change of hardware, especially the move to another manufactur-
er, is prevented by the proprietary libraries and the benefts that a
standard such as IEC61131 ofer would be so restricted. A replace-
ment of a proprietary library of a competitor is excluded, because
the libraries of the manufacturers difer greatly in scope and con-
tent.

4. The understanding of complex modules without an insight into the
source code is often very difcult. Therefore the programs are inef-
cient and error prone.

OSCAT will create with the open OSCAT Library a powerful and compre-
hensive standard for the programming of PLC, which is available in the
Source Code and verifed and tested by a variety of applications in detail.
Extensive knowledge and suggestions will continue to fow through a va-
riety of applications to the library. Thus, the library can be described as
very practical. OSCAT understands his library as a development template
and not as a mature product. The user is solely responsible for the tests
in its application modules with the appropriate procedures and to verify
the necessary accuracy, quality and functionality. At this point we refe-
rence to the license and the disclaimer mentioned in this documentation.

7 Version 1.00

Chapter 2. Introduction

2.2. Conventions

1. Direct modifcation in memory:
Functions, which modify input values with pointer like _Array_Sort,
starts with an underscore "_". _Array_Sort sorts an array directly in
memory, which has the signifcant advantage that a very large array
may not be passed to the function and therefore memory of the size
of the array and the time is saved for copying. However, it is only re-
commended for experienced users to use these functions, as a mi-
suse may lead to serious errors and crashes! In the application of
functions that begin with "_", special care is appropriate and in parti-
cular to ensure that the call parameters never accept undefned va-
lues.

2. Naming of functions:
Function modules with timing manner, such as the function PT1 are
described by naming FT_<modulname> (ie. FT_PT1). Functions wi-
thout a time reference are indicated with F_<modulename>.

3. Logical equations:
Within this guide, the logical links are used & for AND , + for OR, /A
for negated A and # for a XOR (exclusive OR).

4. Setup values for modules:
To achieve that the application and
programming remains clear and
that complex functions can be re-
presented simply, many of the mo-
dules of the library OSCAT have ad-
justable parameters that can be
edited in application by dou-
ble-clicking on the graphic symbol
of the module. Double-clicking on
the icon opens a dialog box that al-
lows you to edit the Setup values. If
a function is used multiple times,
so the setup values are set indivi-
dually for each module. The processing by double-clicking works on
CoDeSys exclusively in CFC. In ST, all parameters, including the se-
tup parameters may passed in the function call. The setup parame-
ters are simply added to the normal inputs. The parameters are in
the graphical interface entered by double click and then processed
as constants under IEC61131. It should be noted that time values
has to be written with syntax "T#200ms" and TRUE and FALSE in ca-
pital letters.

5. Error and status Reporting (ESR):

More complex components are largely contributed a Error or status
output. A Error Output is 0 if no error occurs during the execution. If,

8 Version 1.00

Chapter 2. Introduction

however, in a module a error occurs, this output takes a value in the
range 1 ..99 and reports a error with a error number. A status or Er-
ror Collection module may collect these messages and time-stam-
ped, store them in a database or array, or by TCP/IP forward it to
higher level systems. An output of the type Status is compatible
with a Error starting with identical function. However, a status out-
put reports not only errors but also leads on activities of the module
log. Values between 1..99 are still error messages. Between
100..199 are located the reports of state changes. The range from
200..255 is reserved for Debug Messages. With this, within the libra-
ry OSCAT standard functionality, a simple and comprehensive option
is ofered to integrate operational messages and error messages in
a simple manner, without afecting the function of a system. Modu-
les that support this procedure, as of revision 1.4 are marked "ESR-
ready." For more information on ESR modules, see the section
"Other functions".

2.3. Test environment

The OSCAT library is designed with CoDeSys and tested on diferent sys-
tems.

The test environment consists of the following systems:

1. Beckhof BX 9000
with TwinCAT PLC Control Version 2.10.0

2. Beckhof CX 9001-1001
with TwinCAT PLC Control Version 2.10.0

3. Wago 750-841
with CoDeSys Version 2.3.9.31

4. Möller EC4P222
with CoDeSys Version 2.3.9.31

5. CoDeSys Simulation on I386 CoDeSys 2.3.9.31

6. CoDeSys Simulation on I386 CoDeSys 3.4

7. S7 and STEP 7: The OSCAT library is compiled and verifed on STEP7
since version 1.5.

8. PCWORX / MULTIPROG: The OSCAT library since version 2.6 compiled
on MULTIPROG and verifed.

9. Bosch Rexroth IndraLogic XLC L25/L45/L65 with Indraworks 12VRS

10.Bosch Rexroth IndraMotion MLC L25/L45/L65 with Indraworks 12VRS

11.Bosch Rexroth IndraMotion MTX L45/L65/L85 with Indraworks 12VRS

9 Version 1.00

Chapter 2. Introduction

We are constantly striving OSCAT the library to also test in other test envi-
ronments.

2.4. Releases

This manual is updated by OSCAT continuously. It is recommended to dow-
nload the latest version of the OSCAT manual under www.OSCAT.DE . Here
the most current Manual is available for download. In addition to the Ma-
nual OSCAT prepared a detailed revision history. The OSCAT revisionhistory
lists all revisions of individual modules, with amendments and at what re-
lease the library of this component is included.

2.5. Support

Support is given by the users in the forum
 WWW.OSCAT.DE. A claim for support does not exists, even if the library or
parts of the library are faulty. The support in the forum under the OSCAT is
provided for users voluntarily and with each other. Updates to the library
and documentation are usually made available once a month on the home
page of OSCAT under WWW.OSCAT.DE. A claim for maintenance, troubles-
hooting and software maintenance of any kind is generally not existing
from OSCAT. Please do not send support requests by email to OSCAT. Re-
quests can be processed faster and more efectively when the inquiries
are made in our forum.

10 Version 1.00

http://www.oscat.de/
http://www.oscat.de/
http://www.oscat.de/

Chapter 3. Others

 3. Others

3.1. BUILDING_VERSION

Type Function: DWORD

Input IN : BOOL (if TRUE the module provides the release date)

Output (Version of the library)

BUILDING_VERSION provides if IN = FALSE the current version number as
DWORD. If IN is set to TRUE then the release date of the current version as
a DWORD is returned.

Example: BUILDING_VERSION(FALSE) = 100 for Version 1.00

DWORD_TO_DATE(OSCAT_VERSION(TRUE)) = 2011-1-30

11 Version 1.00

Chapter 4. Actuators

 4. Actuators

4.1. ACTUATOR_2P

Type Function module

Input IN: BYTE (control input 0 - 255)

TEST: BOOL (starts autorun when TRUE)

ARE: BOOL (enable for Autorun)

I / O ARX: BOOL (autorun signal bus)

Output OUT: BOOL (switching signal for valve)

ARO: BOOL (TRUE if autorun is active)

Setup CYCLE_TIME: TIME (clock speed of the valve)

SENS: BYTE (Minimum and maximum input values)

SELF_ACT_TIME: TIME (self act time)

SELF_ACT_PULSE: TIME (switching time with autorun)

SELF_ACT_CYCLES: INT (number of cycles with autorun)

ACTUATOR_2P is an interface for 2-point actuators such as solenoid val-
ves. The 2-point actuator can only be on / of switching and therefore, the
input value IN is canged in a pulse / pause signal at the output OUT. The
cycle time (CYCLE_TIME) determines the switching times of the output.
The sticking of the valve because of a long rest period is prevented by
using the self act time (SELF_ACT_TIME) and the count of self act cycles
(SELF_ACT_CYCLES) and the pulse duration (SELF_ACT_PULSE). The cycles
runs automatically and a stick of the valve can be avoided. After the inter-
val, the module checks whether SELF_ACT_TIME ARE = TRUE and = ARX is
FALSE, then switches ARO for the duration of self-activation to TRUE. At
the same time ARX set to TRUE to prevent that other modules which are
connected to the same ARX go to the Autorun. The input IN value can be
varied from 0..255 If the input signal IN < SENS, the valve remains per-
manently closed (OUT = FALSE) and IN > 255 - SENS means the valve is
permanently open (OUT = TRUE).

12 Version 1.00

Chapter 4. Actuators

4.2. ACTUATOR_3P

Type Function module

Input IN: BYTE (input control signal 0 - 255)

TEST: BOOL (module processes diagnostics if TRUE)

ARE: BOOL (automatic diagnosis is allowed if TRUE)

END_POS: BOOL (input for limit switch)

Output OUT1: BOOL (control signal for fap in the OPEN direction)

OUT2: BOOL (control signal for fap toward close)

POS: BYTE (simulated fap position)

ERROR: BOOL (TRUE if diagnostic errors)

STATUS: BYTE (ESR compliant status output)

I / O ARX: BOOL (Auto-Communications)

Setup T_RUN: TIME (run-time to full movement 0 - 255)

T_EXT: TIME (duration extension at diagnosis)

T_CAL: TIME (faps up period for calibration)

T_DIAG: TIME (time for automatic diagnostics)

 SWITCH_AVAIL : BOOL (TRUE, when limit switch

 is connected)

ACTUATOR_3P is a 3-point actuator interface for controlling actuators with
up / down input. The signal at the input IN is converted into pulses at the
outputs OUT1 and OUT2 which drives the motor accordingly. The input si-
gnal IN is processed and the two control outputs (OUT1 and OUT2) are
controlled so that an input value of 0 closes the fap, 255 opens the fap,
and 127 half-open the fap. The module can also process a limit switch.
The limit switches must be connected so that no matter whether upper or
lower end have been reached, the input END_POS gets TRUE, and thus in-
dicating that the fap has reached one of the two end positions. To set the
limit switch into operation, the setup variable SWITCH_AVAIL has to be

13 Version 1.00

Chapter 4. Actuators

TRUE, otherwise the limit switch is ignored. The diagnostic input TEST can
start at any time a fap and engine diagnostics. The module then goes
through a diagnostic cycle and report any errors at the output ERROR. A
diagnostic cycle drives back the fap to 0%, then measures the running
time from 0% - 100% and drives back to 0%. It also checks if the limit
switches work properly (if it is activated by the setup variable
SWITCH_AVAIL). After the diagnostic cycle, the valve moves back to its po-
sition defned by the input IN. The measured runtimes during the diagno-
stic are used in the operation to drive the fap very closely to each requi-
red position. With the setup variable T_DIAG is specifed after which time a
diagnosis independently is activated without going through the input Test.
After power on automatically a diagnosis cycle runs. If the value T_DIAG =
T#0s, an automatic diagnosis is not performed.

A fap is usually moved up and down to set diferent volume fows. The
more a fap moves, the more it deviates from the ideal absolute position,
because with every move a small position error and is added up over
many movements. To prevent this error with the setup variables T_CAL af-
ter a defned period (The accumulated time of all fap movements), a cali-
bration can be performed automatically. With this calibration the motor
moves in the zero position and the fap is then returned to the value speci-
fed by IN. A value of T#0s for CAL_RUNTIME means that no automatic ca-
libration is carried out.

When calibration and diagnostics without limit for adding a full motion, the
time T_EXT runtime T_RUN to ensure that reached its fnal position without
the fap limit switch safely.

At the output POS of the module, the current fap position is simulated by
set the time T_RUN. At this output can also be determined, when the fap
has reached the position requested the input. If the input TEST = TRUE,
the device performs a diagnostic cycle. With the external variable ARX any
modules communicate with each other and ensure for the self-diagnostic
cycles (after power on) to do not run parallel. The user thereby determines
how many and which modules are connected to the same variable and
thus can be tuned. If a module is connected to an own variable ARX, no
coordination of the diagnostic cycles is done. More information about the
inputs TEST, ARE and ARX can be read at module Autorun.

Status messages the module:

STATUS ARE ARX

100 Normal operation - -

101 Calibration - -

103 Diagnostic UP TRUE TRUE

104 Diagnostic UP TRUE TRUE

14 Version 1.00

Chapter 4. Actuators

4.3. ACTUATOR_A

Type Function module

Input I1: BYTE (control signal 1)

IS: BOOL (input selection)

I2: BYTE (control signal 2)

RV: BOOL (reversal of direction for output Y)

DX: BOOL (self-activation)

Setup RUNTIME: TIME (runtime of the servo motor)

SELF_ACT_TIME: TIME (time for automatic movement)

OUT_MIN: DWORD (output value at I = 0)

OUT_MAX: DWORD (output value at I = 255)

Output Y: WORD (control signal for the servo motor)

ACTUATOR_A is used to control actuators with analog input. The module
has two inputs (I1 and I2) that cover the range 0..255 the entire output
range of Y. The output Y is of type WORD, and its operating range is prede-
termined by the setup values OUT_MIN and OUT_MAX. An input value of 0
produces the output value OUT_MIN and an input value of 255 creates the
value OUT_MAX, diferent input values produce corresponding output va-
lues between OUT_MIN and OUT_MAX. The module can be directly used to
control DA converters with 16 bit input. The input IS selects between two
inputs I1 and I2, thus can, for example, switch between manual and auto-
matic operation. Another input DX switches when a rising edge immedia-
tely to self-activation. If SELF_ACT_TIME > t # 0s then the self-activation
after the time SELF_ACT_TIME is repeated automatically, while the output
Y is switched for the time RUNTIME to OUT_MIN, then for the same time on
OUT_MAX and then returns back to the normal control value. The input RV
can invert the output, Y = OUT_MAX if I = 0 and Y = OUT_MIN when I =
255. In this way, simply the direction of the servo motor to be reversed.

IS IS IS Y

0 0 0 Y = (OUT_MAX-OUT_MIN) * I1 /
255 +OUT_MIN

1 0 0 Y = (OUT_MAX-OUT_MIN) * I2 /

15 Version 1.00

Chapter 4. Actuators

255 +OUT_MIN

0 1 0 Y = OUT_MAX - (OUT_MAX-
OUT_MIN) * I1 /255

1 1 0 Y = OUT_MAX - (OUT_MAX-
OUT_MIN) * I2 /255

- - starts a self activation cycle

4.4. ACTUATOR_COIL

Type Function module

Input IN: BOOL (control signal)

Setup SELF_ACT_CYCLE: TIME (automatic activation time)

SELF_ACT_TIME: TIME (switch on with auto activation)

Output OUT: BOOL (control signal for the pump)

STATUS: BYTE (ESR compliant status output)

ACTUATOR_COIL is used to control simple valves. The output OUT follows
the input signal IN. If the setup variable SELF_ACT_CYCLE set to a value
greater than 0, the valve is automatically activated for the duration of
SELF_ACT_TIME if it was of for the time SELF_ACT_CYCLE. An ESR compli-
ant status output indicates state changes of the valve for further proces-
sing or Data Logging. The status messages are defned as follows:

STATUS = 100, Standby.

STATUS = 101, valve was activated by TRUE at the input IN.

STATUS = 102, valve was activated automatically.

4.5. ACTUATOR_PUMP

Type Function module

16 Version 1.00

Chapter 4. Actuators

Input IN: BOOL (Control signal for pump)

MANUAL: BOOL (Manual control signal)

RST: BOOL (reset signal)

Output PUMP: BOOL (control signal for the pump)

RUNTIME: REAL (engine running time in hours)

CYCLES: REAL (number of on / of cycles of the pump)

Setup MIN_ONTIME: TIME (minimum runtime for motor)

MIN_OFFTIME: TIME (minimum stoptime for motor)

RUN_EVERY: TIME (time after that the pump runs automatical-
ly)

ACTUATOR_PUMP is a pump interface with operating hours counter. The
pump can be turned on with both IN or Manual. The setup variables
MIN_ONTIME and MIN_OFFTIME set a minimum ON time and minimum OFF
time. If the input IN reaches TRUE quicker than MIN_ONTIME, then the
pump continues to run until the minimum run time is reached. If the input
IN is set longer than MIN_ONTIME to TRUE, the pump runs until IN is FALSE
again.

If the pump is turned on in quick succession, the pump waits until the
elapsed time MIN_OFFTIME, until they turn on the pump. With the setup
variables RUN_EVERY the time is defned after that the pump runs auto-
matically when it is standing still for more than RUN_EVERY time, so a
stuck of the pump can be avoided. The pump turns itself on in this case,
and runs for MIN_ONTIME. By RUN_EVERY = T # 0s, the automatic activati-
on can be switched of.

An internal counter counts the pump operating hours and the number of
switching cycles. Both values can be reset to zero with TRUE at input RST.
The hour meter is permanently and gets not lost neither at power failure
or reset. RUNTIME and CYCLES are both REAL values, so not the usual
Overfow happens, as happened with TIME values after 50 days.

4.6. ACTUATOR_UD

Type Function module

17 Version 1.00

Chapter 4. Actuators

Input UD: BOOL (direction input in Auto Mode UP = TRUE)

ON: BOOL (TRUE, when in Auto Mode)

MANUAL: BOOL (TRUE, if Manual Mode)

UP: BOOL (UP enable in Manual Mode)

DN: BOOL (DN enable in Manual Mode)

OFF: BOOL (safety switch TRUE = outputs FALSE)

YUP_IN: BOOL (return input UP relay)

YDN_IN: BOOL (return input DN relay)

Output YUP: BOOL (output for direction UP)

YDN: BOOL (output direction for DN)

STATUS: Byte (ESR compliant status and error output)

Confg SOUND: TIME (minimum on-time)

TOFF: TIME (minimum of time)

OUT_RETURN: BOOL (switches and the return input YUP_In and
YDN_in)

ACTUATOR_UD is a reversing contactor interface with locking and confgu-
rable timing. With additional return inputs a activation was prevented as
long as a relais stuck. The module has an automatic and a manual mode.
In automatic mode (ON = TRUE and Manual = FALSE), the input of the UD
decides about the direction and ON/OFF. As soon as the manual input is
TRUE starts the Manual mode and outputs will follow only the inputs UP
and DN. UP and DN may never be both TRUE, if happens both outputs gets
FALSE. With a safety-switch-of input OFF the outputs are switched of in
both the manual and in automatic mode at any time.
Two return inputs YUP_IN and YDN_IN serve as separate inputs for the
state of the relays due to the avoid activating the output of a other relais
in case of a failure of one relay module. This error is reported through er-
ror messages at the output STATUS. The feedback function is only availa-
ble if the confg variable OUT_RETURN is set to TRUE. Status reports all ac-
tivities of the module in order to provide them for a data record. The sta-
tus output is ESR compatible and combinable with other ESR modules

18 Version 1.00

Chapter 4. Actuators

from our library .
The output status reports two errors:

1: YUP can not be set because YDN_IN TRUE.

2: YDN can not be set because YUP_IN TRUE.

The Confg variables TON and TOFF defne a minimum ontime and a dead
time between two output impulses and therefore large motors or transmis-
sions can be switched, even if they needs a start and stop time.

Manual UP DN ON UD OFF YUP YDN Status

1 0 0 - - 0 0 0 102

1 1 0 - - 0 1 0 103

1 0 1 - - 0 0 1 104

1 1 1 - - 0 0 0 102

0 - - 1 1 0 1 0 111

0 - - 1 0 0 0 1 112

- - - - - 1 0 0 101

1 0 0 0 - 0 0 0 110

0 - - 0 - - 0 0 110

4.7. AUTORUN

Type Function module

Input IN: BOOL (switch input)

TEST: BOOL (enables the Autorun cycle)

ARE: BOOL (Enable Autorun)

Setup TRUN: TIME (minimum duration of the load)

TOFF: TIME (Maximum lifetime of the load)

I / O ARX: BOOL (Autorun Enable Signal)

Output OUT: BOOL (output to load)

ARO: BOOL (TRUE if Autorun active)

19 Version 1.00

Chapter 4. Actuators

AUTORUN monitors the duration of a load and ensures that the load at
OUT is on, after the time TOFF at least for the time TRUN. AUTORUN stores
the run time and switches the output only on, if a minimum TRUN within
the period TOFF is not reached. The input IN is the switching input for the
output OUT. The output ARO indicates that just Autorun is activ. The input
ARE must be TRUE to enable autorun, at ARE a Timer can be connected to
start autorun at certain times. The I/O ARX prevents if TRUE an autorun,
autorun can only be active if ARI = FALSE. If ARI = FALSE and the internal
Timer have expired, the module switches ARO and OUT to TRUE and at the
same time ARI to TRUE. This mechanism can be used in several ways:

a) A TRUE on the I/O ARX can prevent an autorun, it can, for example be
controlled by an external Timer and allow the autorun only during a cer-
tain period of time.

b) The ARI ports of multiple modules can be connected together and thus
prevents that several modules simultaneously switch in the autorun mode.
The modules wait until the frst module is fnished with Autorun and then
the next module will begin. This is very useful to prevent that a larger
number of loads perform simultaneously the autorun and therefore create
unnecessarily high current load.

The operating states of AUTORUN:

IN T
E
S
T

A
R
E

A
R
X

A
R
O

O
U
T

X 0 - - - X Normal operation

- 1 - 1 1 1 TEST starts the Au-
torun cycle

- 0 1 1 0
>
>
1

1 Autorun cycle is ac-
tive

A simple application of Autorun with input and output:

20 Version 1.00

Chapter 4. Actuators

In the next example, the inputs ARE (Autorun Enable) will be released by
a Timer so that autorun will run only at certain times. The autorun of the
modules X1 and X2 will start at the same time.

The following example shows three autorun modules that are locked on
ARI each other, so that only one device can go into the autorun and the
other has to wait.

21 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

 5. Heating, Ventilation, Air Condition

5.1. AIR_DENSITY

Type Function : REAL

Input T: REAL (air temperature in ° C)

P: REAL (air pressure in Pascal)

RH: REAL (humidity in %)

Output (Density of air in kg / m³)

AIR_DENSITY calculates the density of air in kg / m³ depending on pressu-
re, humidity and temperature. The temperature is given in ° C, pressure in
Pascal and the humidity in % (50 = 50%).

5.2. AIR_ENTHALPY

Type Function : REAL

Input T: REAL (air temperature)

RH: REAL (Relative humidity of the air)

Output (Enthalpy of air in J/g)

AIR_ENTHALPY calculates the enthalpy of moist air from the statements T
for temperature in degrees Celsius and relative humidity RH in % (50 =
50%). The enthalpy is calculated in joules/gram.

22 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

5.3. BOILER

Type Function module

Input T_UPPER: REAL (input upper temperature sensor)

T_LOWER: REAL (lower input temperature sensor)

PRESSURE: REAL (input pressure sensor)

ENABLE: BOOL (hot water requirement)

REQ_1: BOOL (input requirements for predefned Temperature
1)

REQ_2: BOOL (input requirements for predefned Temperature
2)

BOOST: BOOL (input requirement for immediate

Deployment)

Output HEAT: BOOL (output loading circuit)

ERROR: BOOL (error signal)

STATUS: Byte (ESR compliant status output)

Setup T_UPPER_MIN: REAL (minimum temperature at top)

Default = 50

T_UPPER_MAX: REAL (maximum temperature at top)

Default = 60

T_LOWER_ENABLE : BOOL (FALSE, if lower
Temperature Sensor does not exist)

T_LOWER_MAX: REAL (maximum temperature of bottom)

Default = 60

T_REQUEST_1: REAL (temperature requirement 1)

Default = 70

T_REQUEST_2: REAL (temperature requirement 2)

Default = 50

T_REQUEST_HYS: REAL (hysteresis control) Default = 5

T_PROTECT_HIGH: REAL (upper limit temperature,

Default = 80)

T_PROTECT_LOW: REAL (lower limit temperature,

Default = 10)

23 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

BOILER is a Controllerfor bufers such as warm water bufer. With two se-
parate temperature sensor inputs also storage layers can be controlled.
With the setup variable T_LOWER_ENABLE the lower temperature sensor
can be switched on and of. When the input ENABLE = TRUE, the boiler is
heated (HEAT = TRUE) until the preset temperature T_LOWER_MAX rea-
ches the lower area of the bufer and then turn of the heater, until the
lower limit temperature of the upper region (T_UPPER_MIN) is reached. If
T_LOWER_ENABLE is set to FALSE, the lower sensor is not evaluated and it
control the temperature between T_UPPER_MIN and T_UPPER_MAX at the
top. A PRESSURE-input protects the boiler and prevents the heating, if not
enough water pressure in the boiler is present. If a pressure sensor is not
present, the input is unconnected. As further protection are the default va-
lues T_PROTECT_LOW (antifreeze) and T_PROTECT_HIGH are available and
prevent the temperature in the bufer to not exceed an upper limit and
also a lower limit. If an error occurs, the output ERROR is set to TRUE, whi-
le a status byte is reported at output STATUS, which can be further evalua-
ted by modules such as ESR_COLLECT. By a rising edge at input BOOST
the bufer temperature is directly heated to T_UPPER_MAX (T_LOWER_ENA-
BLE = FALSE) or T_LOWER_MAX (T_LOWER_ENABLE = TRUE). BOOST can
be used to impairment heating up the boiler when ENABLE is set to FALSE.
The heating by BOOST is edge-triggered and leads during each rising edge
at BOOST to exactly one heating process. Due to a rising edge on BOOST
while ENABLE = TRUE the heating is started immediately until the maxi-
mum temperature is reached. The boiler will be loaded to provide maxi-
mum heat capacity. The inputs REQ_1 and REQ_2 serve any time to provi-
de a preset temperature (or T_REQUEST_1 T_REQUEST_2). REQ can be
used for example to provide a higher temperature for legionella disinfecti-
on or for other purposes. The provision of the request temperatures is
made by measuring at the upper temperature sensor and with a 2-point
control whose hysteresis is set by T_REQUEST_HYS.

Status

1 upper temperature sensor has exceeded the upper limit temperature

2 upper temperature sensor has fallen below the lower limit temperature

3 lower temperature sensor has exceeded the upper limit temperature

4 lower temperature sensor has fallen below the lower limit temperature

24 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

5 Water pressure in the bufer is too small

100 Standby

101 BOOST recharge

102 Standard recharge

103 Recharge on Request Temperature 1

104 Recharge on Request Temperature 2

The following Example shows the application of a BOILER with a TIMER
and a public holiday mode:

5.4. BURNER

Type Function module

Input IN: BOOL (control input)

Stage2: BOOL (control input level 2)

OVER_TEMP: BOOL (temperature limit of the boiler)

OIL_TEMP: BOOL (thermostat of fuel oil warming)

FLAME: BOOL (fame sensor)

RST: BOOL (reset input for failure reset)

RST_TIMER: BOOL (reset for the service counter)

Output MOTOR: BOOL (control signal for the motor)

COIL1: BOOL (control signal for valve oil Level 1)

COIL2: BOOL (control input for oil valve stage 2)

25 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

PRE_HEAT: BOOL (fuel oil warming)

IGNITE: BOOL (ignition)

KWH: REAL (kilo watt hour meter)

STATUS: BYTE (ESR compliant status output)

FAIL: BOOL (fault: TRUE if error appearance)

I / O RUNTIME1: UDINT (operating time level 1)

Runtime2: UDINT (operating time level 2)

CYCLES: UDINT (number of burner starts)

Setup PRE_HEAT_TIME: TIME (maximum time for fuel oil warming)

PRE_VENT_TIME: TIME (prepurge)

PRE_IGNITE_TIME: TIME (pre ignition time)

POST_IGNITE_TIME: TIME (post ignition time)

STAGE2_DELAY: TIME (delay level 2)

SAFETY_TIME: TIME ()

LOCKOUT_TIME: TIME (time must elapse before with

a RST a interference can be deleted)

MULTIPLE_IGNITION: BOOL ()

KW1: REAL (burner output at level 1 in KW)

KW2: REAL (burner output at level 2 in KW)

BURNER is a control interface for oil or gas burner operating at kilowatt
hour meter and counter. The module controls a two-stage burner with op-
tional fuel oil warming. The input IN is the control input that starts the bur-
ner only when the input OVER_TEMP is FALSE. OVER_TEMP is the boiler
thermostat protection, which gets TRUE, if the boiler temperature has rea-
ched the maximum temperature. A burner start begins with the fuel oil

26 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

warming, by PRE_HEAT gets TRUE. Then it waits for a signal at the input
OIL_TEMP. If the signal OIL_TEMP is within the PRE_HEAT_TIME not TRUE
and the oil temperature is not reached, the start sequence is interrupted
and the output FAIL is set to TRUE. At the same time the error is spent at
the Output STATUS. After fuel oil warming the motor gets on and sets the
fan in operation. Then after a defned time the ignition is switched and the
oil valve is opened. If no response of the fame sensor after specifed time
(SAFETY_TIME), the module shows a failure. A fault is signaled even if the
fame sensor responds before the ignition. If after a successful ignition, the
fame breaks of and the set-variable MULTIPLE_IGNITION = TRUE, imme-
diately a ignition is started. A second stage is activated automatically after
the time STAGE2_DELAY when the input STAGE2 is TRUE.

If a fault occurs, then the module is locked for a fxed time LOCKOUT_TIME
and only after this time a RST can start the operation again. During the
LOCKOUT_TIME, the RST Input must be FALSE. A TRUE at input OVER_TEMP
stops immediately every action and reports the error 9.

The status output indicates the current state of the module:

 110 = Wait for Start signal (Standby)
111 = startup sequence is executed
112 = burner runs on stage 1
113 = burner runs at stage 2

A number of error conditions are provided at the output STATUS, if an error
is present:

1 = fuel oil warming has not responded within the PRE_HEAT_TIME
2 = fame sensor is active during fuel oil warming (PRE_HEAT_TIME)
3 = fame sensor is active during the aeration period
(PRE_VENTILATION_TIME)
4 = safety time (Safety_Time) was passed without a fame
5 = fame stops in operation
9 = boiler overheating contact has tripped

Trace recording of a normal boot sequence:

27 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

The signal IN starts the sequence with the output PRE_HEAT. After rea-
ching the oil temperature (OIL_TEMP = TRUE), the engine started and the
PRE_VENTILATION_TIME (time from engine start until oil valve is open)
awaited. After an adjustable time (PPR_IGNITION_TIME) before opening the
oil valve, the ignition is turned on. The ignition is then on until the
POST_IGNITION_TIME has expired. The operating time per stage is measu-
red independently in seconds.

IN over

tem
p

Oil

tem
p

Flam
e

Rst mo-
tor

Oil

coil

Pre

hea
t

ig-
nite

Sta-
tus

fail

0 0 - - 0 0 0 0 0 110 0 Wait mode

1 0 0 0 0 0 0 1 0 111 0 fuel oil warming period

1 0 1 0 0 1 0 1 0 111 0 aeration period

1 0 1 0 0 1 0 1 1 111 0 pre ignition period

1 0 1 0 0 1 1 1 1 111 0 Open valve stage 1

1 0 1 1 0 1 1 1 1 112 0 Flame burns post ignition period

1 0 1 1 0 1 1 1 0 112 0 Burner is running

1 0 1 0 0 1 1 1 1 111 0 Post-ignition after fame stops

- 1 - - - - - - - 9 1 Boiler overheating

1 0 1 1 0 1 0 1 0 3 1 foreign light failure

The following time diagram explains the various setup times and the
sequence:

The timing diagram refects the exact time line:

t1 = pre-heating (PRE_HEAT_TIME)

t2 = prepurge (PRE_VENT_Time)

t3 = pre ignition time (PRE_IGNITE_TIME)

28 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

t4 = safety time (SAFETY_TIME)

t5 = post ignition time (POST_IGNITE_TIME)

t6 = delay for stage 2 (STAGE2_DELAY)

5.5. DEW_CON

Type Function : REAL

Input RH: REAL (Relative Humidity)

T: REAL (temperature in °C)

Output REAL (water vapor concentration in g/m³)

The module DEW_CON calculates from the relative humidity (RH) and
temperature (T in °C) water vapor concentration in the air. The result is
calculated in grams/m³. RH is shown in % (50 = 50%) and indicates the
temperature in °C.

The module is suitable for temperatures from -40°C to +90°C.

5.6. DEW_RH

Type Function : REAL

Input VC: REAL (water vapor concentration in air, in grams / m³)

T: REAL (temperature in °C)

Output REAL (Relative humidity in %)

29 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

30 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

The module DEW_RH calculates the relative humidity in % (50 = 50%)
from the water vapor concentration (VC) and temperature (T in ° C) . The
water vapor concentration is measured in grams / m³. DEW_CON can be
used for calculations in both directions (heat up and cool down). If cooled
too much, then the maximum relative humidity limited to 100%. For calcu-
lation of the dew point of the module DEW_TEMP is recommended.

In the following example, the case will be calculated when air is cooled
from 30°C and relative humidity of 50% by 6 degrees. The module
DEW_CON provides the moisture concentration in the outlet air of 30° and
DEW_RH calculates the resulting relative humidity RH of 69.7%. These cal-
culations are important when air is cooled or heated. In air conditioning
systems a resulting relative humidity of 100% hast to be avoided due to
condensation and the resulting problems.

See also the modules DEW_CON and DEW_TEMP.

5.7. DEW_TEMP

Type Function : REAL

Input RH: REAL (Relative Humidity)

T: REAL (temperature in °C)

Output REAL (dew point)

The module DEW_TEMP calculate the dew point temperature from the re-
lative humidity (RH) and temperature (T in ° C). The relative humidity is gi-
ven in % (50 = 50%).

31 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

5.8. HEAT_INDEX

Type Function : REAL

Input T: REAL (temperature in °C)

RH: REAL (Relative Humidity)

Output REAL (Heat Temperature Index)

HEAT_INDEX calculates at high temperatures and high humidity wind chill.
The function is defned for temperatures above 20 ° C and relative humidi-
ty > 10%. For values outside the defned range, the input temperature is
passed out.

5.9. HEAT_METER

Type Function : REAL

Input TF: REAL (fow temperature in °C)

TR: REAL (back fow temperature in °C)

LPH: REAL (Flow in L/h or L/pulse)

E: BOOL (Enable Signal)

RST: BOOL (asynchronous reset input)

Setup CP: REAL (Specifc heat capacity 2nd component)

DENSITY: REAL (density of the 2nd component)

CONTENT: REAL (share, 1 = 100%)

PULSE_MODE: BOOL (pulse counter if TRUE)

RETURN_METER: BOOL (fow meter in the return

if TRUE)

AVG_TIME: TIME (time interval for current consumption)

Output C: REAL (current consumption in joules/hour)

I / O Y: REAL (amount of heat in joules)

32 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

HEAT_METER is a calorimeter. The amount of heat Y is measured in joules.
The inputs of TF and TR are the forward and return temperature of the me-
dium. At the input LPH the fow rate in liters/hour, resp. the fow rate per
pulse of E is specifed. The property of E is determined by the Setup Varia-
ble PULSE_MODE. PULSE_MODE = FALSE means the amount of heat is ad-
ded continuously as long as E is set to TRUE. PULSE_MODE = TRUE means
the amount of heat with each rising edge of E is added up. The
PULSE_MODE is turned on the use of heat meters, while indicating the fow
rate in liters per pulse at the input LPH and the heat meter is connected
at the input E. If no fow meter is present, the the pump signal is connec-
ted at input E and at the input LPH given the pump capacity in liters per
hour. When using a fow meter with analog output is the output to be con-
verted to liters per hour and sent to the input LPH, the input E will be set
to TRUE. With the setup variables CP, DENSITY and CONTENT the 2nd
component of the medium is specifed. For operation with pure water no
details of CP, DENSITY and CONTENT are necessary. [fzy] If a mixture of
water and a 2nd media is present, with CP the specifc heat capacity in
J/KgK, with DENSITY the density in KG/l and with CONTENT the portion of
the 2nd component is specifed. A proportion of 0.5 means 50% and 1
would be equivalent to 100%. The setup variables RETURN_METER is spe-
cifed whether the fow meter sits in forward or reverse. RETRUN_METER =
TRUE for return measurement and FALSE for fow measurement. The out-
put C of the module represents the current consumption. The current con-
sumption is measured in joules/hour, and is determined at the intervals of
AVG_TIME.

The module has the following default values that are active when the cor-
responding values are not set by the user:

PULSE_MODE = FALSE

RETURN_METER = FALSE

AVG_TIME = T#5s

5.10. HEAT _TEMP

Type Function module

Input T_EXT: REAL (TAT)

33 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

T_INT: REAL (nominal room temperature)

OFFSET: REAL (lowering or raising the

Room temperature)

T_REQ: REAL (temperature requirement)

Output TY: REAL (heating circuit fow temperature)

HEAT: BOOL (heating requirement)

Setup TY_MAX: REAL (maximum heating circuit temperature, 70°C)

TY_MIN: REAL (minimum heating circuit temperature, 25°C)

TY_C: REAL (design temperature, 70°C)

T_INT_C: REAL (room design temperature, 20°C)

T_EXT_C: REAL (T_EXT at design temperature -15°C)

T_DIFF_C: REAL (forward / reverse diferential 10°C)

C: REAL (constant of the heating system, DEFAULT = 1.33)

H: REAL (threshold requirement for heating 3°C)

HEAT_TEMP calculates the fow temperature of the outside temperature by
the following formula:

TY = TR + T_DIFF / 2 * TX + (TY_Setup - T_DIFF / 2 - TR) * TX ^ (1 / C)

with: TR = T_INT + OFFSET

TX := (TR - T_EXT) / (T_INT_Setup - T_EXT_Setup);

The parameters of the heating curve are given by the setup variables
TY_C (design fow temperature), T_INT_C (room temperature at the design
point), T_EXT_C (outside temperature at the design point) and T_DIFF_C
(diference between forward / reverse at the design point). With the input
ofset, the heating curve of room reduction (negative ofset) or room
boost (positive ofset) can be adjusted. With the setup variables TY_MIN
and TY_MAX the fow temperature can be kept to a minimum and maxi-
mum value. The input T_REQ is used to support requirements such as ex-
ternal temperature from the boiler. If T_REQ is larger than the calculated
value of the heating curve for TY so TY is set to T_REQ. The limit of
TY_MAX does not apply to the request by T_REQ. The setup variable H de-
fne at what outside temperature the heating curve is calculated, as long
as T_EXT + H >= T_INT +OFFSET the TY stays at 0 and HEAT is FALSE. If
T_EXT + H < T_INT + OFFSET the HEAT is TRUE and TY outputs the calcu-

34 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

lated fow temperature. The setup variable C determines the curvature of
the heating curve. The curvature is dependent on the heating system.

Convectors: C = 1.25 – 1.45

Panel radiators: C = 1.20 – 1.30

Radiators: C = 1.30

Pipes: C = 1.25

Floor heating:C = 1.1

The larger the value of C, the stronger the heating curve is curved. A va-
lue of 1.0 gives a straight line as the heating curve. Typical heating sys-
tems are between 1.0 and 1.5.

The graph shows Heating curves for the design temperatures of 30 - 80°C
fow temperature at -20 ° C outside temperature and at a C of 1.33:

5.11. LEGIONELLA

Type Function module

35 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

Input MANUAL: BOOL (Manual Start Input)

TEMP_BOILER: REAL (boiler temperature)

TEMP_RETURN: REAL (temperature of the circulation pipe)

DT_IN: DATE_TIME (Current time of day and date)

RST: BOOL (Asynchronous Reset)

Output HEAT: BOOL (control signal for hot water heating)

PUMP: BOOL (control signal for circulation pump)

STATUS: Byte (ESR compliant status output)

Valve0..7: BOOL (control outputs for valves of circulation)

RUN: bool (true if sequence is running)

Setup T_START: TOD (time of day at which the disinfection starts)

DAY: INT (weekday on which the disinfection starts)

 TEMP_SET : REAL (temperature of the boiler)

TEMP_OFFSET: REAL ()

TEMP_HYS: REAL ()

T_MAX_HEAT: TIME (maximum time to heat up the boiler)

T_MAX_RETURN: TIME (maximum time until the input

TEMP_RETURN to be active after VALVE)

TP_0 .. 7: TIME (disinfection time for circles 0..7).

LEGIONELLA has an integrated timer, which starts on a certain day (DAY)
to a specifc time of day (T_START) the desinfection. For this purpose, the
external interface of the local time is needed (DT_IN). Each time can be
started the desinfection by hand with a rising edge at MANUAL.

36 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

The process of a disinfection cycle is started with an internal start due to
DT_IN, DAY and T_START, or by a rising edge at MANUAL. The output HEAT
is TRUE and controls the heating of the boiler. Within the heating time
T_MAX_HEAT the input signal TEMP_BOILER must go then to TRUE. If the
temperature is not reported within T_MAX_HEAT, the output STATUS pas-
ses fault. The disinfection then continues anyway. After the heating, the
heater temperature is measured and reheated if necessary by TRUE at the
output HEAT. When the boiler temperature is reached, PUMP gets TRUE
and the circulation pump is turned on. Then the individual valves are ope-
ned one after the other and measured, whether within the time
T_MAX_RETURN the temperature war reached at the return of the circulati-
on line. If a return fow thermometer is not present, the input T_MAX_RE-
TURN remains open.

The output STATE is compatible with ESR, and may give the following mes-
sages:

110 On hold
111 Sequence run

1 Boiler temperature was not reached

2 Return temperature at Ventil0 was not reached

3..8 Return temperature at valve1..7 was not reached

Schematic internal structure of Legionella:

The following example shows a simulation for 2 disinfection circuits with
trace recording. In this structure, VALVE2 connected to the input RST and
thus disrupts the sequence after of two circles:

37 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

5.12. SDD

Type Function : REAL

Input T: REAL (air temperature in ° C)

ICE: BOOL (TRUE for air over ice and FALSE for air over

water)

Output REAL (saturation vapor pressure in Pa)

SDD calculates the saturation vapor pressure for water vapor in air. The
temperature T is given in Celsius. The result can be calculated for air over
ice (ICE = TRUE) and for air to water (ICE = FALSE). The scope of the func-

38 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

tion is -30°C to 70°C over water and at -60°C to 0°C on ice. The calculati-
on is performed according to the Magnus formula.

5.13. SDD_NH3

Type Function : REAL

Input T: REAL (temperature in °C)

Output REAL (saturation vapor pressure in Pa)

SDD_NH3 calculates the saturation vapor pressure for ammonia (NH3).
The temperature T is given in Celsius. The scope of the function is located
at -109°C to 98°C.

5.14. SDT_NH3

Type Function : REAL

Input T: REAL (temperature in °C)

Output REAL (saturation vapor pressure in Pa)

SDT_NH3 calculates the saturation temperature for ammonia (NH3). The
pressure P is given in Celsius. The scope of the function is 0.001 bar to 60
bar.

5.15. T_AVG24

Type Function module

Input TS: INT (external temperature sensor)

39 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

DTI: DT (Date and time of day)

RST: BOOL (Reset)

Setup T_FILTER: TIME (T of the input flter)

SCALE: REAL:= 1.0 (scaling factor)

SFO: REAL (zero balance)

Output TA: REAL (Current outside temperature)

TP: BOOL (TRUE if T24 is renewed)

I / O T24: REAL (daily average temperature)

T24_MAX: REAL (Maximaltemp. in the last 24 hours)

T24_MIN: REAL (minimum temperature in the last 24 hours)

T_AVG24 determines the daily average temperature T24. The sensor input
TS is of type INT and is the temperature * 10 (a value of 234 means 23.4
°C). The data of flter run for noise suppression on a low-pass flter with
time T_FILTER. By scale and SFO a zero error, and the scale of the sensor
can be adjusted. At output TA shows the current outside temperature,
which is measured every hour and half hour. The module writes every 30
minutes the last, over the 48 values calculated daily average in the I / O
variable T24. This needs to be defned externally and thereby can be de-
fnded remanent or persistent. If the frst start a value of -1000 found in
T24, then the module initializes at the frst call with the current sensor va-
lue, so that every 30 minutes a valid average may be passed. If T24 has
any value other than -1000, then the module is initialized with this value
and calculates the average based on this value. This allows a power failure
and remanent storage of T24 an immediate working after restart. A reset
input can always force a restart of the module, which depending on the
value in T24, the module is initializes with either TS or the old value of
T24. If the module should be set on a particular average, the desired value
is written into T24 and then a reset generated.

T24_MAX and T24_MIN passes the maximum and minimum values of the
last 24 hours. To determine the maximum and minimum value, the tempe-
ratures of each half hour are considered. A temperature value that occurs
between 2 measurements is not considered.

40 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

5.16. TANK_LEVEL

Type Function module

Input LEVEL : BOOL (input for level sensor)

LEAK: BOOL (input for leak sensors)

ACLR: BOOL (input to reset the alarm)

Setup MAX_VALVE_TIME (Maximum make-up time for valve)

LEVEL_DELAY_TIME: TIME (response time for input LEVEL)

Output VALVE: BOOL (output signal to valve)

ALARM: BOOL (alarm output)

STATUS: BYTE (ESR compliant status output)

TANK_LEVEL used to keep the level of liquid in a tank constant. At the in-
put LEVEL a niveau sensor is connected and at the output VALVE, the after
feed valve is connected. To debounce at the troubled fll niveau the level
sensor, its response time can be adjusted using the Setup variable
LEVEL_DELAY_TIME. At the input LEVEL with TRUE is displayed, that the li-
quid level is too low. After the input was through for the time LEVEL_DE-
LAY_TIME to TRUE, the output VALVE set to TRUE to replenish fuid. During
the replenishment process MAX_VALVE_TIME is monitored, and if VALVE
stay longer than this time to TRUE, an alarm is generated in the case of
sensor failures or leaks to prevent a permanent refll. The module also mo-
nitors the input LEAK which for normal operation must always be FALSE.
Once LEAK goes to TRUE the refll immediately stops and a alarm is gene-
rated. LEAK is used to connect leak sensors and or additional niveau sen-
sors above the normal levels. If f an alarm occurs in the operation the mo-
dule will stop any refll until the error has been fxed and the input ACLR is
set to TRUE shortly. At the ESR status output all operating conditions are
passed with ESR messages.

STATUS = 1, leak sensor (LEAK) is enabled.

STATUS = 2, refll time (MAX_VALVE_TIME) was exceeded.

STATUS = 100, level is reached, feeding of.

STATUS = 101, ACLR was pressed.

STATUS = 102, level below, make-up runs.

41 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

5.17. TANK_VOL1

Type Function: REAL

Input TR : REAL (Radius of the tank)

TL: REAL (Length of the tank)

H: REAL (Filling height of the tank)

Output Real (Contents of the tank to the fll level)

TANK_VOL1 calculates the contents of a tube-shaped tanks flled to the
height H.

5.18. TANK_VOL2

Type Function: REAL

Input TR : REAL (Radius of the tank)

H: REAL (Filling height of the tank)

Output Real (Contents of the tank to the fll level)

TANK_VOL2 calculates the contents of
a spherical tanks flled to the height H.

42 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

5.19. TEMP_EXT

Type Function module

Input T_EXT1: REAL (external temperature sensor 1)

T_EXT2: REAL (external temperature sensor 2)

T_EXT3: REAL (external temperature sensor 3)

T_EXT_Setup: BYTE (query mode)

DT_IN: DATE_TIME (daytime)

Output T_EXT: REAL (output outside temperature)

HEAT: BOOL (heating signal)

COOL: BOOL (cooling signal)

Setup T_EXT_MIN: REAL (minimum outdoor temperature)

T_EXT_MAX: REAL (maximum outside temperature)

T_EXT_DEFAULT: REAL (default external temperature)

HEAT_PERIOD_START: DATE (start of heating season)

HEAT_PERIOD_STOP: DATE (end of heating season)

COOL_PERIOD_START: DATE (start of cooling period)

COOL_PERIOD_STOP: DATE (end of cooling period)

HEAT_START_TEAMP_DAY (heating trigger temperature day)

HEAT_START_TEAMP_NIGHT (heating trigger temperature night)

HEAT_STOP_TEMP: REAL (heating stop temperature)

COOL_START_TEAMP_DAY (cooling start temperature day)

COOL_START_TEMP_NIGHT (cooling start temperature night)

COOL_STOP_TEMP: REAL (cooling stop temperature)

START_DAY: TOD (start of the day)

START_NIGHT: TOD (early night)

CYCLE_TIME: TIME (query time for outside temperature)

43 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

TEMP_EXT processes up to 3 remote temperature sensor and provides by
mode a selected external temperature to the heating control. It calculates
signals for heating and cooling depending on outdoor temperature, date
and time. With the input T_EXT_Setup is defned how the output value
T_EXT is determined. If T_EXT_Setup is not connected, then the default va-
lue 0. The setup values T_EXT_MIN and T_EXT_Max set the minimum and
maximum value of the external temperature inputs. If these limits are ex-
ceeded or not reached, a fault in the sensor or broken wire is assumed and
instead of measured valued the default value T_EXT_DEFAULT is used.

T_EXT_Setup T_EXT

0 Average of T_EXT1, T_ext2 and T_ext3

1 T_EXT1

2 T_EXT2

3 T_EXT3

4 T_EXT_DEFAULT

5 Lowest value of the 3 inputs

6 Highest value of 3 inputs

7 Average value of 3 inputs

With the setup variables HEAT_PERIOD and COOL_PERIOD is defnes when
heating and when cooling is allowed. The decision, whether the output
HEAT or COOL gets TRUE, still depends on the setup values HEAT_START -
HEAT_STOP and COOL_START and COOL_STOP. These values can be def-
ned separately for day and night. The start of a day and night period can
be determined by the setup variables START_DAY and START_NIGHT. A va-
riable CYCLE_TIME specifes how often the outside temperature to be que-
ried.

44 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

5.20. WATER_CP

Type Function : REAL

Input T: REAL (water temperature in °C)

Output REAL (Specifc heat capacity at temperature T)

WATER_CP calculates the specifc heat capacity of liquid water as a functi-
on of temperature at atmospheric pressure. The calculation is valid in the
temperature range from 0 to 100 degrees Celsius and is calculated in
joules / (gram * kelvin). The temperature T is given in Celsius.

5.21. WATER_DENSITY

Type Function : REAL

Input T: REAL (temperature of the water)

SAT: BOOL (TRUE, if the water is saturated with air)

Output REAL (water density in grams / liter)

WATER_DENSITIY calculates the density of liquid water as a function of
temperature at atmospheric pressure. The temperature T is given in Celsi-
us. The highest density reached water at 3.983 °C with 999.974950 grams
per liter. WATER_DENSITY calculates the density of liquid water, not frozen
or evaporated water. WATER_DENSITY calculates the density of air-free wa-
ter when SAT = FALSE, and air-saturated water when SAT = TRUE. The cal-
culated values are calculated using an approximate formula and results
values with an accuracy greater than 0.01% in the temperature range of 0
- 100°C at a constant pressure of 1013 mBar.

The deviation of the density of air saturated with water is corrected accor-
ding to the formula of Bignell.

The dependence of the density of water pressure is relatively low at about
0.046 kg/m³ per 1 bar pressure increase, in the range up to 50 bar. The
low pressure dependence has practical applications, no signifcant infu-
ence.

45 Version 1.00

Chapter 5. Heating, Ventilation, Air Condition

5.22. WATER_ENTHALPY

Type Function : REAL

Input T: REAL (temperature of the water)

Output REAL (enthalpy of water in J/g at temperature T)

WATER_ENTHALPY calculates the Enthalpy (Heat content) of liquid water
as a function of temperature at atmospheric pressure. The temperature T
is given in Celsius. The calculation is valid for a temperature of 0 to 100 °
C and the result is the amount of heat needed to head the water from 0 °
C to a temperature of T. The result is expressed in joules / gram J / g and
passed as KJ/Kg. It is calculated by linear interpolation in steps of 10 ° and
thus reach a sufcient accuracy for non-scientifc applications. A possible
Application of WATER_ENTHALPY is to calculate the amount of energy nee-
ded, for example, to head a bufer tank at X (T2 - T1) degree. From the
energy required then the runtime of a boiler can be calculated exactly and
the required energy can be provided. Since there temperature readings
are signifcantly delays, with this method a better heating is possible in
practice.

5.23. WCT

Type Function : REAL

Input T: REAL (outdoor temperature in ° C)

V: REAL (Wind speed in km/h)

Output REAL (wind chill temperature)

WCT calculates the wind chill temperature depending on the wind speed in
km/h and the outside temperature °C. The wind chill temperature is def-
ned only for wind speeds greater than 5 km/h and temperatures below 10
°C. For values outside the defned range, the input temperature is output.

46 Version 1.00

Chapter 6. Electrical Engineering

 6. Electrical Engineering

6.1. CLICK

Type Function module

Input IN: BOOL (control input for buttons)

Output Q: BOOL (output)

SINGLE: BOOL (output for simple key press)

DOUBLE: BOOL (output for double key press)

TRIPLE: BOOL (output for tripple key press)

STATUS: BYTE (ESR compliant status output)

Setup T_DEBOUNCE: TIME (debounce time for buttons)

T_SHORT: TIME (Maximum time for short pulse)

T_PAUSE: TIME (maximum interval between two pulses)

T_RESetup: TIME (reconfguration time)

CLICK is a button interface which automatically adjusts to the connected
switch. If a switch is connected, CLICK recognize themselves whether it is
an opener or closer, and then evaluates each case only the frst fank.
With the setup variable T_DEBOUNCE the debounce of the buttons is set.
It is set by default to 10 ms. The time T_RESetup is used to decide whe-
ther a make or break is connected to the input IN. If the input is for more
than this time in a state, it is assumed as rest mode. The default value is 1
minute for T_RESetup. With short successive pulses a single, double or tri-
ple pulse evaluated and switches according to the output SINGLE, DOUBLE
or TRIPLE. If the pulse is longer than the setup time T_SHORT or a pause
between two pulses is longer than T_PAUSE, then the pulse sequence is in-
terrupted and the corresponding output is set, until the contrary input pul-
se is inactive. The output Q corresponds to the input pulse. However, it is
always High- active. An ESR compliant status output indicates state chan-
ges to subsequent ESR compliant evaluation modules. With short pulses,
the output SINGLE (one pulse), DOUBLE (2 pulses) or TRIPLE (3 pulses) is

47 Version 1.00

Chapter 6. Electrical Engineering

selected. The corresponding output remains at least one cycle active and
as a maximum of as long as the input IN remains active.

Status

110 Inactive input

111 Output SINGLE activated

112 Output DOUBLE activated

113 TRIPLE output enabled

Example 1 shows an application of CLICK with three subsequent dimming
modules. Analog can also be used up to 3 switch or a mixture of dimmers
or switches.

Example 2 shows CLICK with a dimmer, and behaves like a dimmer wi-
thout CLICK, however, a short double-click sets the output of the dimmer
at 100% and a triple-click is as an additional switching output available.

48 Version 1.00

Chapter 6. Electrical Engineering

6.2. CLICK_MODE

Type Function module

Input IN: BOOL (control input for buttons)

Output SINGLE: BOOL (output for simple key press)

DOUBLE: BOOL (output for double key press)

LONG: BOOL (output for a long key press)

TP_LONG: BOOL (pulse when long key press starts)

Setup T_LONG: TIME (decoding time for long key press)

CLICK_MODE is a push button interface which decodes both simple click,
double click or long keystrokes. With short pulses a single or double-click
is decoded switches the according outputs SINGLE or DOUBLE, each for a
one cycle. If the pulse is longer than the T_LONG, then the output TP_OUT
is set for one cycle to TRUE and the output LONG remains TRUE until the
input IN goes back to FALSE.

6.3. DEBOUNCE

Type Function module

Input IN: BOOL (input signal from the switch or push button)

TD: TIME (debounce)

PM: BOOL (operation mode TRUE = pulse mode operation)

Output Q: BOOL (output)

DEBOUNCE can debounce the signal from a switch or button and pass it
debounced to the output Q . If PM = FALSE, the output Q follows the input
signal IN debounced, if PM = TRUE at the input IN a leading edge is detec-

49 Version 1.00

Chapter 6. Electrical Engineering

ted and the output Q remains only for one cycle to TRUE. The debounce
time for the input IN is set by the time TD.

6.4. DIMM_2

Type Function module

Input SET: BOOL (input for switching the output to VAL)

VAL BYTE (value for the SET operation)

I1: BOOL (tax receipt for Taster1, On)

I2: BOOL (tax receipt for switch2, down)

RST: BOOL (entrance to switch of the output)

Output Q: BOOL (output)

D1: BOOL (output for doubleclick at l1)

D2: BOOL (output for doubleclick at l2)

I / O OUT: Byte (Dimmer Output)

Setup T_DEBOUNCE: TIME (debounce time for buttons)

T_ON_MAX: TIME (start limitation)

T_DIMM_START: TIME (reaction time to dim)

T_DIMM: TIME (time for a dimming ramp)

MIN_ON: BYTE (minimum value of OUT at startup)

MAX_ON: BYTE (maximum value of OUT at startup)

RST_OUT: BOOL (if Reset is true, OUT is set to 0)

SOFT_DIMM: BOOL (Soft start at power-up)

DBL1_TOG: BOOL (Enable Toggle for D1)

DBL2_TOG: BOOL (Enable Toggle for D2)

DBL1_SET: BOOL (Enable Value for doubleclick I1)

DBL2_SET: BOOL (Enable Value for doubleclick I2)

DBL1_POS: BYTE (value for doubleclick at I1)

DBL2_POS: BYTE (value for double at I2)

50 Version 1.00

Chapter 6. Electrical Engineering

 DIMM_2 is an intelligent Dimmer for 2-button operation. The Dimmer can
be set via the setup variables. The time T_DEBOUNCE is used to debounce
the switch and is set by default to 10ms. A start limitation T_ON_MAX swit-
ches the output of when it is exceeded. The times T_DIMM_Start and
T_DIMM set the timing cycle of the Dimmers .

With the inputs of SET and RST, the output Q can be switched on or of at
any time. SET sets the output OUT to the predetermined value VAL, RST
sets OUT to 0 if the setup variable RST_OUT is set to TRUE. RST switches
D1 and D2 in addition to FALSE. SET and RST may be used for connection
of Fire alarm systems or Alarm systems. In case of fre or burglary all the
lights can be set to On with SET or switched to of with RST when exit of
the building.

While switch on and of the last output value of the dimmer remains at the
output OUT, only a FALSE at output Q switches the light of and a TRUE at
Q switch the lamp on again. While switching on by a short press the mpo-
dule limits the output OUT for a minimum MIN_ON and a maximum of at
least MAX_ON. If, for example, the dimmer set to 0 then the module is au-
tomatically set the output OUT to 50 and vice versa, the output OUT if it is
higher than MAX_ON is limited to MAX_ON. These parameters are to pre-
vent that after switching-on a very small value at the output OUT occures
and despite active Q no light is switched on. By the parameter MIN_ON a
minimum value of light is defned when switched on. Conversely, for ex-
ample: the light in the bedroom is prevented to apply full brightness im-
mediately. If the parameter SOFT_DIMM set to TRUE, the DIM starts at
power on with a long button press every time at 0. In addition to the func-
tion of the dimmer, at the inputs I1 and I2 a doubleclick is decoded and
puts the outputs of D1 resp. D2 for one cycle to TRUE. If the setup variable
D?_TOGGLE is set to TRUE then the output D? is inverted by dou-
ble-clicking. The outputs D1 and D2 can be used to to switch additional
consumer or events with a double-click. An output of D? may be attributed
to the SET input and the dimmer also be set to a predefned value defn-
ded by VAL using a double-click. If the setup variable DBL?_SET set to
TRUE, so a corresponding double-click does not modify the associated out-
put D? but the value of the variable DBL?_POS is passed through to the
output OUT and the output Q is switched on if necessary. OUT is the value
of the dimmer and is defned as an I/O variable external. This has the ad-
vantage that the value of the dimmer can be infuenced externally at any
time and can be reconstructed even after a power failure. OUT can be de-
fned if desired retentive and persistent.

The following table shows the operating status of the dimmer:

51 Version 1.00

Chapter 6. Electrical Engineering

I1 I2 SET RST Q D1 D2 OUT

single - 0 0 1 - - LIMIT(MIN_ON,OUT,MAX_ON)

- single 0 - -

double - 0 0 TOG

PULSE

- double 0 0 TOG

PULSE

long - 0 0 1 - dimm up

start from 1 if SOFT_DIMM = TRUE

- long 1 dimm down and turn of at 0

- - 1 0 ON - VAL

- - 0 1 OFF OFF 0 wenn RST_OUT = TRUE

6.5. DIMM_I

Type Function module

Input SET: BOOL (input for switching the output to VAL)

VAL BYTE (value for the SET operation)

IN: BOOL (control input for buttons)

RST: BOOL (entrance to switch of the output)

Output Q: BOOL (output)

DBL: BOOL (double-click output)

I / O OUT: Byte (Dimmer Output)

Setup T_DEBOUNCE: TIME (debounce time for buttons)

T_RESETUP: TIME (reconfguration time)

T_ON_MAX: TIME (start limitation)

T_DIMM_START: TIME (reaction time to dim)

T_DIMM: TIME (time for a dimming ramp)

MIN_ON: BYTE: = 50 (minimum value of OUT at startup)

MAX_ON: BYTE:= 255 (maximum value of OUT at startup)

SOFT_DIMM: BOOL (if TRUE dimming begins after

52 Version 1.00

Chapter 6. Electrical Engineering

switch on at 0)

DBL_TOGGLE: BOOL (if TRUE the output DBL is

inverted at each double-click)

RST_OUT: BOOL (if Reset is true, OUT is set to 0)

DIMM_I is an intelligent Dimmer which automatically adjusts itself to ope-
ning or closing switches without reconfgure. The Dimmer can be set via
the setup variables. Over time T_DEBOUNCE the button is debounced. It is
set by default to 10ms. The time variable T_RECONFIG decide whether a
open or close switch is connected at the Input IN. If the input is longer
than that defned T_RECONFIG defned time in a state, this is assumed to
rest position. If the start limitation T_ON_MAX is exceeded, it switches the
output automatically of. The times and T_DIMM_Start T_DIMM sets the ti-
ming of the Dimmers fxed.

With the inputs of SET and RST, the output Q can be switched on or of at
any time. SET relies on the output OUT through the by VAL predetermined
value , RST sets OUT to 0 if the setup RST_OUT variable is set to TRUE.
RST also switch DBL to FALSE. SET and RST may be used to connect fre
alarm systems or alarm systems. WIth SET all the lights in an emergency
case can be centrally enabled or disabled with RST when leaving the buil-
ding.

While switch on and of the last output value of the dimmer remains at the
output OUT, only a FALSE at output Q switches the light of, and a TRUE at
Q switch the lamp on again. When switching from a short press limits the
module the output OUT to at least MIN_ON and maximal MAX_ON. If, for
example, the dimmer to 0, the device automatically sets the output OUT
to 50 and vice versa, the output OUT gets, if it is higher than MAX_ON, is
limited to MAX_ON.

These parameters are intended to prevent present after turning a very
small value at the output OUT and Q active terms despite no light. By the
parameter MIN_ON a minimum value of light is defned when switched on.

53 Version 1.00

Chapter 6. Electrical Engineering

Conversely, for example: the light in the bedroom is prevented by
MAX_ON to apply full brightness immediately after switch on. If the para-
meter SOFT_DIMM set to TRUE, the dimming starts at power on with a
long button press every time at 0. In addition to the function of the dim-
mer a double-click on the input IN is decoded to the output DBL for one
cycle to TRUE. If the setup variable DBL_TOGGLE is set to TRUE, the out-
put DBL is inverted each time at a double click.

The output DBL can be used to switch additional load or events with a
double-click. The output DBL can be switched to the input SET and the
dimmer can be set to a predefned value VAL using a double-click. OUT is
the value of the dimmer and is defned as an I/O variable external. This
has the advantage that the value of the dimmer can be changed external-
ly at any time and can be reconstructed even after a power failure. OUT
can be defned if desired retentive and persistent.

The following table shows the operating status of the dimmer:

IN SET RST Q DIR DBL OUT

single 0 0 NOT Q OUT<127 - LIMIT(MIN_ON,OUT,MAX_ON)

double 0 0 - - TOG

PULSE

long 0 0 ON NOT DIR - Ramp up or down depending on DIR

start at 0 when soft_dimm = TRUE and Q = 0

reverse direction if 0 or 255 is reached

- 1 0 ON OUT<127 - VAL

- 0 1 OFF UP OFF 0 wenn RST_OUT = TRUE

6.6. F_LAMP

Type Function module

Input SWITCH: BOOL (dimmer switch input)

DIMM: BYTE (input from the dimmer)

RST: BOOL (input for resetting the counter)

Output LAMP: BYTE (dimmer output)

STATUS: BYTE (ESR compliant status output)

I / O ONTIME: UDINT (operating time in seconds)

ONTIME: UDINT (operating time in seconds)

54 Version 1.00

Chapter 6. Electrical Engineering

Setup T_NO_DIMM: UINT (cut of time dimmer in hours)

T_Maintenance : UINT (reporting time for lamp replacement in

Hours)

F_LAMP is an interface for fuorescent lamp. The output LAMP follows the
input DIMM and SWITCH. If DIMM is not connected, the default is of 255 is
used and the output LAMP passes 0-255 depending on SWITCH. The out-
puts ONTIME and CYCLES count the operating time of the light bulb in se-
conds and the switching cycles. Both values are externally stored and can
be saved permanent or persistent , more info, see the module ONTIME. A
TRUE at the input RST resets both values to 0. The setup variables
T_NO_DIMM determines after which length of time a new lamp the dim-
ming may be done. This value, when not otherwise set by the user,
defaults to 100 hours. Fluorescent lamps may not use reduced levels of
brightness, during the frst 100 hours , otherwise your life is shortened
dramatically. By a RST at replace of the lamp module it prevents the dim-
ming in the initial phase. The output state is ESR compatible, and can re-
port operating conditions, but also pass a message to change the bulb.
The default time T_MAINTENANCE is, if not modifed by the user, 15000
hours. If T_Maintenance set to 0 so no message is generated for lamp re-
placement.

Status

110 Lamp of

111 Lamp on, no dimming allowed

112 Lamp on, dim allowed

120 Call for lamp replacement

The following example shows the use of the module F_LAMP in conjunction
with DIMM_I:

55 Version 1.00

Chapter 6. Electrical Engineering

6.7. PULSE_LENGTH

Type Function module

Input IN: BOOL (input pulse)

Output SHORT: BOOL(pulse if IN < T_SHORT)

MIDDLE: BOOL (pulse if IN =< T_LONG and IN >= T_SHORT)

LONG: BOOL (TRUE if IN > T_SHORT)

Setup T_SHORT: TIME (Maximum length for short pulse)

T_ LONG : TIME (minimum length for a long pulse)

PULSE_LENGTH sets on an input pulse at IN one of the 3 outputs. The out-
put SHORT is for one cycle TRUE if the input pulse is less than T_SHORT.
The output MIDDLE will TRUE for one cycle when the input pulse length is
between T_SHORT and T_LONG. The output of LONG is set when the input
pulse has exceeded T_LONG and remains to TRUE, as the input pulse is set
to TRUE.

6.8. PULSE_T

Type Function module

Input IN: BOOL (input pulse)

T1: TIME (minimum time)

T2: TIME (maximum time)

Output Q: BOOL (output pulse)

56 Version 1.00

Chapter 6. Electrical Engineering

PULSE_T generates an output pulse length of T2 when the input IN is less
than T1 to TRUE. If the input IN for longer than T1 to TRUE, the output Q
follows the input IN and is at the same time with IN set to FALSE. If IN is
longer than the time T2 to TRUE, the output is after the time T2 automati-
cally reset to FALSE. A further impulse at IN while the output is TRUE sets
the output with the falling edge of IN to FALSE. Is input IN longer than the
time T2 set to TRUE, the output Q automatically defaults to FALSE after
the time T2 .

The following chart shows the input pulse that applies to T1 longer and

the output Q follows the input. Then, at input IN a short pulse (less than
T1) is generated and the output remains active until a further pulse to IN
resets it again. Another short pulse at the input IN sets the output to
TRUE, until it will be deleted automatically after the expiry of the time T2.

6.9. SW_RECONFIG

Type Function module

Input IN: BOOL (push button input)

TD: TIME (debounce time for input)

TR: TIME (reconfguration)

Output Q: BOOL (output)

SW_RESetup is an intelligent push button interface, it can debounce the
input and automatically detects whether a break contact element or clo-
sing contact is connected to the input IN. If at input IN a break contact ele-
ment is detected, so the output Q is inverted. If a closing contact is
connected to the input IN, the module creates for each change of state of

57 Version 1.00

Chapter 6. Electrical Engineering

the switch with a pulse with length TR. TD is the bounce time and TR the
reconfguration time. If the input IN remains longer than the reconfgurati-
on time is, in a state, the output is FALSE, and will thus pass the next pul-
se at the input to an active high pulse. In the practical installation techni-
ques this may be a great advantage if some switches are somtimes are
break contact elements and sometimes connected as closing contact.

The following chart illustrates the operation of the module:

6.10. SWITCH_I

Type Function module

Input SET: BOOL (input for switching the output to 100%)

IN: BOOL (control input for buttons)

RST: BOOL (entrance to switch of the output)

Output Q: BOOL (output)

Setup T_DEBOUNCE: TIME (debounce time for buttons)

T_RESetup: TIME (reconfguration time)

T_ON_MAX: TIME (start limitation)

SWITCH_I is an intelligent switch which automatically adjusts to the
connected switch or push-button switches. If a switch is connected, the
output follows each switching edge of the switch. However, if a push-but-
ton switch is connected, SWITCH_I detects whether there is an opener or
closer, and then evaluates only the frst edge. The setup variable
T_ON_MAX determines after which time the output is switched of automa-

58 Version 1.00

Chapter 6. Electrical Engineering

tically. With the SET and RST inputs the output can be switched at any
time to 100% or of. Applications are the message of smoke detectors or
alarm systems. The time T_DEBOUNCE serves to debounce the switch and
is by default set to 10ms. The time T_RESetup is used to decide whether a
close switch or break switch is connected to the input IN. If the input is for
more than this time in a state, it is assumed as rest mode.

6.11. SWITCH_X

Type Function module

Input IN1..6: BOOL (push button inputs)

Output Qx: BOOL (switch outputs)

Setup T_DEBOUNCE: TIME (debounce time for buttons)

SWITCH_X is an interface for up to 6 push-buttons. The individual buttons
are debounced with T_DEBOUNCE and switch the respective outputs Q1 to
Q6. IN3 to IN6 are directly connected to the outputs when they be opera-
ted alone. IN1 and IN2 generate a pulse for one cycle after they are pres-
sed. If one of the inputs IN3 up to N6 is pressed during input IN1 or IN2 is
operated , then no output pulse passed to Q1 to Q6, but the corresponding
output Q31 to Q62 is activated. Q42, for example, is activated if IN4 is
operated while IN2 is operated. Q2 and Q4 are then inactive.

SWITCH_X thus allows the inputs IN3 to IN6 to realize a triple occupancy
and select it by pressing IN1 or IN2 and a further input.

59 Version 1.00

Chapter 6. Electrical Engineering

6.12. TIMER _ 1

Type Function module

Input E: BOOL (Enable Input)

DTI: DATE_TIME (date time input)

START: TOD(time of day)

DURATION: TIME (duration of the output signal)

DAY: BYTE (Selection of the week days)

Output Q: BOOL (switch output)

TIMER_1 generates at selectable days a week, an output event Q with a
programmable duration (DURATION) and a fxed starting time START. DTI
provides the module the local time. START and DURATION sets the time of
day and duration of the event. The input DAY determines on which days of
week the event is generated. IF DAY is set to 0, thus no event is produced.
A DURATION = 0 indicates that the output is only set for one cycle. The re-
sulted output signal can also run past midnight, or it may be longer than a
day. The maximum pulse duration, however is 49 days (T#49d). The input
DAY is of type BYTE and the bits 0..7 defne the days of the event. Bit 0
corresponds to Sunday, bit 1 Saturday .. Bit 6 corresponds to Monday. If
the bits 0..6 in DAY are set, so every day an event is generated, otherwise
only for those days for which the corresponding bit is set. The input De-
fault is, if it is not connected, set to 2#0111_1111, and thus is the module
is active every day. An additional Enable Input E can unlock the module.
This input is TRUE if it is not connected.

6.13. TIMER_2

Type function module

Input DT_IN: DATE_TIME (date time input)

START_TIME: TOD (start time)

DURATION: TIME (duration of the output signal)

MODE: BYTE (daily selection)

60 Version 1.00

Chapter 6. Electrical Engineering

HOLIDAY: BOOL (holiday signal)

Output Q: BOOL (Output)

TIMER_2 generates an output event with a programmable duration. DT_IN
provides the building block the local time. START_TIME and DURATION spe-
cifes the time of day and the duration of the event. The input mode deter-
mines how often and on which days the event are produced. HOLIDAY is
an input signal indicating whether the current day is a holiday. This signal
can be generated by the module HOLIDAY.

MODE Q

0 no output is created

1 only on Monday

2 only on Tuesday

3 only on Wednesday

4 only on Thursday

5 only on Friday

6 only on Saturday

7 Only on Sunday

11 every day

12 every 2 days

13 every 3 days

14 every 4 days

15 every 5 days

16 every 6 days

20 Weekdays (Monday to Friday)

21 Saturday and Sunday

22 Working days (weekdays excluding public holidays)

23 Holidays and weekends

24 Only on holidays

25 First day of the month

26 Last day of the month

27 Last day of the year (December 31)

61 Version 1.00

Chapter 6. Electrical Engineering

28 First day of the year (January 1)

Example of the use of TIMER_2:

The example shows the system routine (in this case for a Wago controller),
which reads the internal clock and provides for DATE_TIME for TIMER_2
and HOLIDAY. HOLIDAY provides holiday information on the TIMER_2. TI-
MER_2 supplies in this example at weekends (Saturday and Sunday) and
holidays (mode = 22) an output signal at 12:00 noon for a period of 30 mi-
nutes. TIMER_2 produces, limited by the cycle time, the exact DURATION
at the output. TIMER_2 notes on which day it produced the last output pul-
se, thus ensuring that generates only one pulse per day.

6.14. TIMER_EVENT_DECODE

Type Function

Input EVENT: STRING (Event string)

LANG: INT (language)

OUTPUT TIMER_BOOK

TIMER_EVENT_DECODE allows the programming of Timer Events using
string instead of loading the structure TIMER_EVENT.

The events are specifed as follows:

<Typ;Kanal; Day , Start, duration, country, Lor>

Element Description Formats

< > Start and stop characters of
the record.

Type Type of event (as described in
TIMER_P4)

'123', 2#0101, 8#33, 16#FF

Channel to be programmed channel '123', 2#0101, 8#33, 16#FF

62 Version 1.00

Chapter 6. Electrical Engineering

Day Selection number eg Day '123', 2#0101, 8#33, 16#FF, 'Mo'

'MO, DI, DO'

Start Start time (daytime) 'TOD#12:00'

Duration Duration of the event 'T#1h3m22s'

Country And logical link '123', 2#0101, 8#33, 16#FF

Lor logical or link '123', 2#0101, 8#33, 16#FF

Field Day has, depending on the type of event diferent meanings and can
also be specifed with week as a text or a list of the week. The input LANG
specifes the used language, 0 = the default language set in the setup , 1
= english, more info about languages, see the section data types.

6.15. TIMER_EXT

Type Function module

Input ENA: BOOL (module enable)

ON: BOOL (forces the output Q to TRUE)

OFF: BOOL (forces the output Q to FALSE)

MAN: BOOL (control input when ON = OFF = TRUE)

SWITCH: BOOL (push button input)

DT_IN: DATETIME (input for date and time of day)

SUN_SET: TOD (time of sunset)

SUN_RISE: TOD (time of sunrise)

HOLIDAY: BOOL (input for holiday module)

Setup HOLIDAY: BOOL (input for holiday module)

T_SET_START: TIME (Start-before sunset)

T_SET_STOP: TIME (of time after sunset)

T_DAY_STOP: TOD (of time after daytime)

T_RISE_START: TIME (ON time before sunrise)

T_DAY_START: TOD (turn-on time of day)

T_RISE_STOP: TIME (OFF time after sunrise)

ENABLE_SATURDAY: BOOL (active on Saturdays if TRUE)

63 Version 1.00

Chapter 6. Electrical Engineering

ENABLE_SUNDAY: BOOL (active on Sundays if TRUE)

ENABLE_HOLIDAY: BOOL (active on Holiday if TRUE)

Output Q: BOOL (switch output)

Status: BYTE (ESR compliant status output)

 TIMER_EXT is a Timer specifcally for outdoor lighting or other loads are to
be turned on at twilight. The output Q is at fxed times of the day ON and
OFF, in addition, the output can before twilight turned ON and after twi-
light turned of automatically. An additional input SWITCH can switch the
output, regardless of the respective time of day, on and of. The inputs
ENA, ON, OFF and MAN provide a detailed automatic and manual control
of the output. If ENA is not connected, the module is still Enabled because
its internal Default is TRUE. The following table provides detailed informa-
tion about the operating conditions of the block.

ENA ON OFF MAN SWITCH Timer Q STATUS

L - - - - - L 104

H H L - - - H 101

H L H - - - L 102

H H H X - - MAN 103

H L L - - NOT Q 110

H L L - - TOD = T_DAY_START H 111

H L L - - TOD = T_DAY_STOP L 112

H L L - - TOD = SUN_RISE - T_RISE_START H 113

H L L - - TOD = SUN_RISE + T_RISE_STOP L 114

H L L - - TOD = SUN_SET - T_SET_START H 115

H L L - - TOD = SUN_SET + T_SET_STOP L 116

64 Version 1.00

Chapter 6. Electrical Engineering

The setup variables ENABLE_SUNDAY, SATURDAY and HOLIDAY defne
whether the block is active on Saturdays, Sundays and public holidays. If
the module should not be ON at public holidays, at the input HOLIDAY to
the module HOLIDAY must be connected from the library, this module indi-
cates a TRUE if today is a public holiday. The setup variables T_SET_START,
T_SET_STOP, T_RISE_START, T_RISE_STOP, T_DAY_START and T_DAY_STOP
set the switching times. if one of those variables is T#0s or TOD#00:00
then the switch time is inactive. This means that ie. T_SET_START (switch
before sunset) only turns on when it is set to at least 1 second. the modu-
le gets ON the output Q, at a time T_DAY_START, and in reach of
T_DAY_STOP OFF again when one of the two times (T_DAY_START or
T_DAY_STOP) TOD#0:00 is and the corresponding switch process is not
executed. The module switch ON at the time T_RISE_START before sunrise
(SUN_RISE), and OFF reaching of T_RISE_STOP after sunrise again. The
same is for the times at sunset.

6.16. TIMER_P4

Type function module

Input DTIME: DATE_TIME (date time input)

65 Version 1.00

Chapter 6. Electrical Engineering

TREF_0: TOD (reference time 0)

TREF_1: TOD (reference 1)

HOLY: BOOL (holiday input)

L0..L3: BOOL (Logic Inputs)

OFS: INT (channel ofset)

ENQ: BOOL (If ENQ = FALSE all outputs remain FALSE)

MAN: BOOL (switch for manual operation)

MI: BYTE (channel selection for manual operation)

RST: BOOL (Asynchronous Reset)

I / O PROG: ARRAY [0..63] OF TIMER_EVENT (program data)

Output Q0..Q3: BOOL (switch outputs)

STATUS: BYTE (ESR compliant status output)

TIMER_P4 is a universal programmable Timer which has a lot of opportuni-
ties. In addition to events at fxed times, also events depending on exter-
nal hours like sunrise or sunset can be programmed. In addition to the ti-
ming programm, all outputs can be linked fexible with logic inputs. Up to
63 independently programmable events are possible, and the user has
virtually unlimited possibilities.

The programming of the Timers are done via an ARRAY [0..63] OF
TIMER_EVENT. It can thereby any number of events per channel and over-
lapping events can be generated.

The data structure TIMER_EVENT contains the following felds:

Data field Data Type Description

CHANNEL BYTE Channel number

66 Version 1.00

Chapter 6. Electrical Engineering

TYPE BYTE Event Type

DAY BYTE Day or another number

START TOD Start time

DURATION TIME Duration of the event

LAND BYTE Mask to be logical and

LOR BYTE Mask for Logical OR

LAST DWORD Internal use

The data feld is the CHANNEL specifed for the relevant event channel, if
multiple channels are to be switched simultaneously per channel must be
programmed in separate events. The TYPE of event determines what type
of event is to be programmed, see the overview in the following table. DAY
defnes either a bitmask days of the week (Bit7 = MO, bit0 = SO), or the
day of the month/year or a defned another number or count depending
on the event type. START is the start time (TIMEOFDAY) of the event, with
events as a function of an external time START can also defne a time dif-
ference. The duration defnes independent of the type of event, how long
the event lasts. Was an event is started the timer remembers in the data
structure each day, so that each event is run at maximum once per day. If
several events per day and channel are to be defned, they can be pro-
grammed independently by multiple events. LAND and LOR defne logical
masks for additional logical links, a detailed description of the possible
state of links is provided below in the text.

The Timer has an additional manual input which allows to override outputs
manually. If MAN = TRUE is the 4 lowest bits of the input MI are passed to
the outputs Q. The input is an enable input and must be set to TRUE for
normal operation, if ENQ is set to FALSE, all outputs remain at FALSE. The
Module can always be reset by means of the asynchronous input RST,
here all running events are deleted. The input OFS is used only when more
of the TIMER modules are cascaded, the value of OFS then determines
which channel number the frst output of the module has. If OFS is set to 4
for example, so the modules does not response to the corresponding
channel number 0..3 but to the channels 4..7. Thus, multiple devices are
cascaded in a simple way.

The STATUS output is an ESR compliant status output which reports the
operating states of the module.

STATUS = 100 (The module is disabled , ENQ = FALSE)

STATUS = 101 (manual operation, MAN = TRUE)

STATUS = 102 (automatic operation)

 The following example shows two cascaded timers :

67 Version 1.00

Chapter 6. Electrical Engineering

 Block diagram of the timers :

If a programmed event occurs then the corresponding timer of the selec-
ted channel is started with the pre-defned time period. The channel out-
put can be linked by logical AND with up to 4 inputs L0..L3, only the inputs
are associated, which are defnded in the event mask LAND with a 1 . con-
tains the mask LAND not a 1 (2#00000000) then no input is connected to
the output. If the mask LAND contains, for example 2#00001001) then the
output signal of the Timer is linked with the logic inputs L0 and L3 by AND.
The output in this case is only true if both an event the Timer has started
and at the same time L0 and L3 are TRUE. After the AND link the output
can be additionally connected to any logic inputs in the same manner
using the mask LOR OR.

The following events can be programmed:

TYP
E

Description DAY Start Duration

1 daily event - Start time Duration

2 Event on selected days of the week B0..6 Start time Duration

3 Event every N days N Start time Duration

10 Weekly Event Day of the Start time Duration

68 Version 1.00

Chapter 6. Electrical Engineering

week

20 monthly event Day of the
month

Start time Duration

21 last day of the month - Start time Duration

30 annual event Day of the
year

Start time Duration

31 last day of the year - Start time Duration

40 Event to leap days - Start time Duration

41 Event on holidays - Start time Duration

42 on holidays and weekends - Start time Duration

43 Event during the week - Start time Duration

50 External event after time 0,1 Ofset Duration

51 Event before external time 0,1 -Ofset Duration

52 Output to time+set ofset 0,1,2 Ofset

53 Output to time + ofset delete 0,1,2 Ofset

54 output to time - set ofset 0,1,2 Ofset

55 output to time - ofset delete 0,1,2 Ofset

Event Types:

1. daily event

at a daily event, only channel number, start time and duration of the
event is programmed. The feld DAY has no meaning.

2. Event on selected days of the week

at this event the timer is started at selectable day of the week. In feld
DAY is here defned by a bit mask at which days during the week days the
event has to be started. Monday = bit 6,.... Sunday = bit 0. The event will
start only on weekdays when the corresponding bit in feld DAY is TRUE.

3. Event every N days

this after a period of N days, the defned event starts. In feld DAY is speci-
fed, after how many days the event starts. N = 3 means that the event
will be started every 3 days. N can take this value of 1..255.

10. Weekly Event

69 Version 1.00

Chapter 6. Electrical Engineering

here, a event is started on a particular day in the week, the corresponding
day is defned in the feld DAY: 1 = Monday 7 = Sunday.

20. monthly event

At monthly events in the feld DAY the corresponding day of the month is
defned in which the event will take place. DAY = 24 means that the event
respectively at 24th of a month starts.

21. End of the month

As months have no fxed length, it is also useful to generate an event on
the last day of a month. In this mode the DAY has no meaning.

30. annual event

At annual events, in the feld DAY the corresponding day of the year is de-
fned, in which the event starts. DAY = 33 means that each event at the
33rd day of the year starts, which corresponds to the 2nd of February.

31. End of the year

As years have no fxed length, it is also useful to generate an event on the
last day of the year . In this mode the DAY has no meaning. The event is
produced on 31. December.

40. Event to leap days

This event is only generated on 29. February, which is only in a leap year.
DAY here has no meaning.

41. Event on holidays

This event is only generated when the input HOLY = TRUE. At this input
must be connected the module HOLIDAY from the library. If this mode is
not used, the input HOLY remains open. The Field Day has no meaning
here.

42. Event on holidays and weekends

This event is generated when the input HOLY = TRUE, or a Saturday or
Sunday is present. At this input JHOLY must be connected for this purpose
the module HOLIDAY from the library. If this mode is not used, the input
HOLY remains open. The Field Day has no meaning here.

43. Event during the week

This event is generated only during the week days from Monday to Friday.
The Field Day has no meaning here.

50. External event after time

Here is generated a daily event that depends on an external time. IN feld
START here is not the start time itself, but rather set the ofset of the ex-
ternal time. In feld DAY is indicated the external time that is used as a re-
ference. DAY = 0 means TREF_0, and DAY = 1 corresponds TREF_1. An
event after external time, for example, is an event 1 hour after sunset. In
this case, TREF_1 (DAY must be on 1) passes the time of sunset, and in

70 Version 1.00

Chapter 6. Electrical Engineering

the feld Start the time 01:00 (one hour ofset) is specifed. The times for
sunrise and sunset can be fed from the module SUN_TIME from the library.

51. Event before external time

Here is generated a daily event that depends on an external time. IN feld
START here is not the start time itself, but rather set the ofset of the ex-
ternal time. In feld DAY is indicated the external time that is used as a re-
ference. DAY = 0 means TREF_0, and DAY = 1 corresponds TREF_1. An
event before external time, for example, is an event 1 before after sunset.
In this case, TREF_1 (DAY must be on 1) passes the time of sunset, and in
the feld Start the time 01:00 (one hour ofset before TREF_1) is specifed.
The times for sunrise and sunset can be fed from the module SUN_TIME
from the library.

52 Set output after external time

An event of type 52 switches the output on at reaching an external time +
START. The external time is TREF1 when DAY = 1 or TREF_0 if DAY = 0. If
DAY > 1 the external time is 0. The output remains then to TRUE until it is
overwritten with a new event or is deleted by a separate event.

53 Delete output with external ofset

An event of type 53 switches the output of at reaching an external time +
START. The external time is TREF1 when DAY = 1 or TREF_0 if DAY = 0. Is
DAY > 1 is the external time is 0.

54 Set output with negative ofset

An event of type 54 switches the output on at reaching an external time -
START. The external time is TREF1 when DAY = 1 or TREF_0 if DAY = 0. If
DAY >1 the external time is 0. The output is then held to TRUE until it is
overwritten with a new event or deleted by a separate event.

55 Output with negative ofset

An event of type 55 switches the output of when reaching the external
time - START. The external time is TREF1 when DAY = 1 or TREF_0 if DAY =
0. Is DAY > 1 is the external time is 0.

71 Version 1.00

Chapter 7. Blind Modules

 7. Blind Modules

7.1. Introduction

The following modules are designed and harmonized to each other that a
modular structure of a shutter controller can be reached. This modular
system allows quick and easy setup from simple to complex blind control-
lers which are aligned to the application. The system can also be expan-
ded at any later time, allowing any expansion of the functions. Applicati-
ons include all types of blinds, shutters, and all types of shading devices.
The modules are designed so they can be easily connected in series and
the order of the wiring at the same time determines the priority of the
functions. The signals UP and DN for manual operation, and the guidelines
for angle and position in the automatic mode (PI and AI) are passed from
module to this module, which ensures a simple signal path and a clear
structure. A special feature is that the signals UP and DN if both are true
simultaneously switch to automatic mode.

All modules have the inputs UP and DN with which the manual upd and
down command is received and by QU and QD is passed on to the next
module. If both inputs UP and DN set to TRUE then the relevant modules
switch to automatic mode and evaluate the inputs PI and AI (position and
angle) for input from the blind.

If both inputs UP and DN set to TRUE then the relevant modules switch to
automatic mode and evaluate the inputs AI and PI (position and angle for
input from the blind. By order of the modules also the priority of the indivi-
dual functions are determined and can easily changed by users .

Future or custom features can be turned on in this way quickly and easily
into the existing modules without having to modify the existing program-
ming.

The STATUS output passes ESR compliant messages about the state of the
module. When there are no messages available each module passes the
input adjacent S_IN status messages on to the STATUS output.

Summary of the Blind status messages:

STATUS Module Description

111 SECURITY Safe position in case of fre

112 SECURITY Security position at wind

113 SECURITY Safety position at ALARM

114 SECURITY Door contact safety position

115 SECURITY Security position in the rain

72 Version 1.00

Chapter 7. Blind Modules

1 ACTUATOR Error UP and DOWN simultaneously

120 ACTUATOR Up motion

121 ACTUATOR down motion

121 CONTROL Up moving position

122 CONTROL Down moving position

123 CONTROL UP moving angle

124 CONTROL Down moving angle

121 CONTROL_S Up motion

122 CONTROL_S down motion

123 CONTROL_S Auto positioning

127 CONTROL_S Lockout Time

128 CONTROL_S Calibration

129 CONTROL_S Extend mode

130 INPUT Standby

131 INPUT Manual Timeout

132 INPUT Manual Up

133 INPUT Manual Down

134 INPUT SingleClick up

135 INPUT SingleClick Down

136 INPUT Forced position

137 INPUT Double click 1

138 INPUT Double click 2

141 NIGHT Night position active

151 SHADE Active shading

160-175 SCENE active scene

178 SET Set operation

179 SET Restore operation

73 Version 1.00

Chapter 7. Blind Modules

7.2. BLIND_ACTUATOR

Type Function module

Input UP: BOOL (Input UP)

DN: BOOL (input DOWN)

S_IN: BYTE (ESR compliant status input)

T_UD: TIME (run time up / down)

T_ANGLE: TIME (duration of the slat adjustment)

Setup T_LOCKOUT: TIME (delay time between change of direction)

Output POS: BYTE (position of the shutter, 0 = bottom, 255 = top)

ANG: BYTE (angle of the fn, 0 = vertical, 255 = horiz.)

QU: BOOL (motor up signal)

QD: BOOL (motor down signal)

STATUS: BYTE (ESR compliant status output)

BLIND_ACTUATOR is a blind / shutter actuator to simulate the position and
the angle of the slats. The inputs UP and DN are mutually interlocked, so
that QU and QD can never be active at the same time. With time T_LOCK-
OUT the minimum pause is set between a change of direction. Additionally
BLIND_ACTUATOR provides two outputs with the type Byte which simulate
the position of fn and the position of the shutter. For accurate simulation,
adjust the setup times and T_UD T_ANGLE accordingly. T_UD sets the time
to drive from "closed" needed to "open" (up position). T_ANGLE specifes
the time for adjusting the fn from "vertical" to horizontal. The actuator en-
sures that frst the fn be placed horizontally and then starting the "open"
action of the shutter. Conversely, when "close" the shutter the fn set ver-
tically before the down movement begins. POS = 0 means blinds shut
down, and POS means = 255 blind is up. Intermediate positions are in ac-
cordance with intermediate values 0 ..255 The angle of the blades is issu-
ed by the output ANG, with mean ANG = 0 is invertical position and ANG
= 255 is the horizontal position, values 0-255 indicate the appropriate an-

74 Version 1.00

Chapter 7. Blind Modules

gle. By outputs POS and ANG the information on the position of the shut-
ter control is provided. ANG and POS may only provide useful results if the
times T_UD and T_ANGLE are precisely adapted to the corresponding
blind. The actuator may, if T_ANGLE is set to T#0s, be used for all types of
roller shutters. The inputs T_UD, T_ANGLE T_LOCKOUT and have the follo-
wing default values:

T_UD = T#10S

T_ANGLE = T#3S

T_LOCKOUT = T#100MS

The input and output S_IN STATUS are ESR compliant outputs and inputs.
In Input S_IN the upstream functions report their status to the module, this
status will be forwarded to the output of STATUS, and own status messa-
ges also issued on STATUS. If a status message is present at the input it
will overwrite the own status messages, an error will be put out with hig-
hest priority.

STATUS Meaning

0 no message

1 Error, UP and DN active simultaneously

101 Manual UP

102 Manual DN

NNN forwarded message

The following graphic shows the internal structure and function of the mo-
dule:

7.3. BLIND_CONTROL

Type Function module

75 Version 1.00

Chapter 7. Blind Modules

Input UP: BOOL (Input UP)

DN: BOOL (input DOWN)

S_IN: BYTE (ESR compliant status input)

PI : BYTE (default of position)

AI : BYTE (default of fn angle)

T_UD : TIME (time to move up 0 ..255)

T_ANGLE : TIME (time to move fap from von 0 ..255) 255

Setup SENS : BYTE (resolution of controll module)

T_LOCKOUT : TIME (lockout time at direction reverse of motors)

Output POS : BYTE (simulated shutter position)

ANG : BYTE (simulated fn angle)

MU: BOOL (motor up signal)

MD: BOOL (Motor down Signal)

STATUS: BYTE (ESR compliant status output)

BLIND_CONTROL controls the shutter and the fn angle according to set-
tings in PI and AI if UP and DN is both TRUE (automatik modue). POS und
ANG are herein the values of the shutter. At this outputs the simulated po-
sition and angle of the shutter are bypassed. BLIND_CONTROL switch the
outputs MU or MD to TRUE in a corresponding order until the values in POS
and ANG correspond to default of PI and AI. A internal sequencer controls
that while shutter moves up and down the fn angle is adjusted before the
up and down movement happens. So when the shutter moves up or down,
the fn angle is adjusted and after the movement it restores it's angle. The
input SNES defnes at which diference the control module is active and
adjusts the output in a way to correspond to the inputs PI and AI. IF SENS
= 0 every diference is controlled, if SENS = 5 (default) after a diference
of 5 between the setup values and the actual values controlling is done. If
UP and DN is not TRUE, BLIND_CONTROL leaves the automatic mode and
the outputs QU and QD are controled by manual mode of UP and DN.
BLIND_CONTROL does not need BLIND_ACTUATOR to control a shutter be-
cause BLIND_ACTUATOR is integrated in BLIND_CONTROL already. If no au-

76 Version 1.00

Chapter 7. Blind Modules

tomatic mode for a shutter is needed, BLIND_ACTUATOR only is recom-
mended. Use of BLIND_CONTROL must be carefully and must set the cycle
time for the module smaller than T_ANGLE / 512 * SENS. With a double-
click to the SENS symbol the setup values can be adjusted (default 5). If
the cycle time is to long, the shutter moves up and down in a not periodi-
cally manner. If a smaller cycle time is not possible, the SENS value can be
increased.

The graph shows the shutter geometry.

The table shows the working states of the module.

UP DN PI AI MU MD

L L - - L L no action

H L - - H L shutter moves up

L H - - L H shutter moves down

H H P A X X Position P and angle A are driven automatically.

The input and output S_IN STATUS are ESR compliant outputs and inputs.
In Input S_IN the upstream functions report their status to the module, this
status will be forwarded to the output of STATUS, and own status messa-
ges also issued on STATUS.

77 Version 1.00

Chapter 7. Blind Modules

STATUS Meaning

0 no message

101 manually up

102 manually down

121 position up

122 position down

123 fn setting horizontally

124 fn setting vertically

NNN forwarded messages

7.4. BLIND_CONTROL_S

Type Function module

Input UP: BOOL (Input UP)

DN: BOOL (input DOWN)

S_IN: BYTE (ESR compliant status input)

PI : BYTE (default of position)

T_UP: TIME (duration of the blinds upwards)

T_DN: TIME (Duration of the blinds downwards)

RU: BOOL (release up)

RD: BOOL (release down)

Setup T_LOCKOUT : TIME (lockout time at direction reverse of motors)

T_EXT: TIME (extension time to stop)

EXT_TRIG: BYTE (Trigger for extension time)

R_POS_TOP: BYTE (Maximum position when RD = TRUE)

R_POS_BOT: BYTE (minimum position if RU = TRUE)

Output POS: BYTE (Simulated position)

MU: BOOL (motor up signal)

MD: BOOL (Motor down Signal)

STATUS: BYTE (ESR compliant status output)

78 Version 1.00

Chapter 7. Blind Modules

BLIND_CONTROL_S manages and controls the position of blinds. The out-
puts MU and MD control the up and down direction of the motors. The time
T_LOCKOUT is the waiting time for a change of direction between MU and
MD and the times T_UP and T_DN determine how long the engine need for
a full movement downwards or upwards. As the run time of the engine can
vary, on reaching a fnal position (Above or below) the corresponding mo-
tor is in addition to the time T_EXT controlled to ensure that the fnal posi-
tion is attained, which provides a continuous calibration of the system. For
the frst start and after a power failure, a calibration run is done automati-
cally upwards. The variable EXT_TRIG indicates from what distance from
the fnal value the run time will be extended. In automatic mode the set-
ting R_POS_TOP limits the maximum position of the blinds if RD = TRUE.
For example the blind remain at 240 if RD = TRUE and R_POS_TOP = 240,
which may prevent freezing in winter in the up position. Similarly,
R_POS_BOT and RU = TRUE are for the lowest possible position in charge,
which can place during the summer for forced ventilation. The output of
POS is the simulated position of the blinds, 0 = down and 255 = up. S_IN
and STATUS are the ESR compatible status inputs and outputs.

UP DN STATUS MU MD

H H 103 POS is regulated to PI auto aut
o

L H 102 Manual operation down L H

H L 101 Manual mode up H L

L L - Manual Timeout L L

- - 107 Lockout Time L L

- - 108 Auto calibration H L

- - 109 Time extension X X

The module is interconnected with other components of the shutter con-
trol:

79 Version 1.00

Chapter 7. Blind Modules

BLIND_CONTROL_S is specially designed for the control of blinds and has
in contrast to shutters no angle, so the device also has no input AI and no
output ANG. BLIND_CONTROL_S can be connected of course with the other
BLIND components of the library.

The module supports automatic calibration, which can cause, after a
power failure, to move up all blinds, which is undesired some times in your
absence. Therefore, in case of your absence the desired position of the
blinds should be given to the input PI. The blinds move to up position for
calibration, and then automatically move into the desired position. The au-
tomatic calibration however can be prevented if both inputs UP and DN
are FALSE.

7.5. BLIND_INPUT

Type Function module

Input POS: BYTE (return of the blind position)

ANG: BYTE (return of the slat angle)

S1: BOOL (Input UP)

S2: BOOL (input DOWN)

IN: BOOL (Controlled operations if TRUE)

PI: BYTE (position if IN = TRUE)

AI: BYTE (angle if IN = TRUE)

Setup SINGLE_SWITCH: BOOL (TRUE for single button operation)

CLICK_EN: BOOL (TRUE for single-click mode)

CLICK_TIME: TIME (Timeout for K lick Detection)

MAX_RUNTIME: TIME (Timeout for one movement)

MANUAL_TIMEOUT: TIME (Timeout of manual operation)

DEBOUNCE_TIME: TIME (debounce time for the inputs S)

DBL_CLK1: BOOL (move to double click position if TRUE)

DBL_POS1: BYTE (position at S1 double-click)

80 Version 1.00

Chapter 7. Blind Modules

DBL_ANG1: BYTE (angle at S1 double-click)

DBL_CLK2 away: BOOL (move to double click position if TRUE)

DBL_POS2: BYTE: = 255 (position at S2 double click)

DBL_ANG2: BYTE: = 255 (angle at S2 double click)

D1_TOGGLE: BOOL: = TRUE (Toggle mode for D1)

D2_TOGGLE: BOOL: = TRUE (Toggle mode for D2)

MASTER_MODE: BOOL (enable the master mode if TRUE)

Output QU: BOOL (motor up signal)

QD: BOOL (motor down signal)

STATUS: BYTE (ESR compliant status output)

PO: BYTE (output position)

AO: BYTE (output angular position)

D1: BOOL (command output for double click function 1)

D2: BOOL (command output for double click function 2)

BLIND_INPUT serves as a key interface for operating blinds. The module
supports three modes, manual, automatic and controlled operation. if IN =
FALSE (manual mode), the inputs S1 and S2 are used to control the out-
puts of QU and QD. If the Setup Variable SINGLE_SWITCH = TRUE, then the
input S2 is ignored and the entire control is on the S1 switch. S1 will
switch alternately QU and QD so as followed by pressing the button S1
change between up and down motion in succession. The internal default is
FALSE (2 button confguration). The setup variable MANUAL_TIMEOUT def-
ned rest period after which (time with no signal at S1 or S2), the device
automatically switches to automatic mode. If this value is not specifed
then the internal default value of 1 hour used. When the input IN = TRUE,
the outputs of QU and QD goes to automatic (both are set TRUE), and
switched the inputs PI and AI to the outputs PO and AO. IN can be pulsed
to take on the values in short, the module controls these values for the
time MAX_RUNTIME and then switches back to automatic mode. As long as
IN = TRUE the automatic mode is pushed to the values of AI and PI. The
inputs POS and ANG are the return receipts for the current position of the
shutter. These values are provided by the module BLIND_CONTROL. With

81 Version 1.00

Chapter 7. Blind Modules

the variable SETUP CLICK_MODE a click operation is set, a short press
starts on the direction up for S1 and down for S2 and a second short press
stops the appropriate direction or reverses the direction. This setting make
sense for blinds with a long run time, or to move with a button press to
one end. if the key is pressed longer as the setup time CLICK_TIME so the
CLICK mode will be leaved and the shutter moves as long as the button is
held down in manual mode. If a key press is shorter than CLICK_TIME, the
blinds moves further until a further click stops the drive or a fnal position
is achieved. The default value is 500 milliseconds for CLICK_TIME and the
default for CLICK_MODE is TRUE. If both variables CLICK_MODE Setup and
SINGLE_SWITCH are TRUE at the same time, a button operation with only
one button on S1 is possible. With the time set of MAX_RUNTIME the run
time is limited, which ist started by a simple one Click started but not ter-
minated with another Click . The value of MAX_ RUNTIME defaults to
T#60s and should be as long as the blind safely reach the end position
from any position. Two outputs D1 and D2 can be used to evaluate a dou-
ble-click on S1 or S2, if D?_Toggle = TRUE a double-clicking switch an ap-
propriate output and a further double-click again of, if D?_Toggle = FALSE
so with each double-click a pulse is generated at the corresponding out-
put.

After a manual operation command is the module is for the time
MANUAL_TIMEOUT in the mode "Manual Standby" (STATUS = 131), the
manually hit position is maintained so well for this time and the automatic
functions of all downstream components are suppressed. By a long (longer
than CLICK_TIME) pressure on both buttons, the "Manual standby" mode is
terminated prematurely and returned to automatic mode.

The following table shows the operating states of the module:

POS

ANG

S1 S2 IN PI

AI

QU QD PO

AO

D1 D2

X L L L - H H X * 5 - - Standy / automatic operation

- - - H Y H H Y - - controlled operation, PI and AI are
served

X H L L - H L X - - Manual mode up

X L H L - L H X - - Manual operation down

X H H L - H H X - - Manual Mode Exit prematurely

X L L L - L L X - - Manual operation standby until ti-
meout expires

X * 4 L L - H L X - - CLICK_EN = TRUE

X L * 4 L - L H X - - CLICK_EN = TRUE

- * 2 L L - H H - / D1 - D1_TOGGLE = TRUE

- * 2 L L - H H - * 3 - D1_TOGGLE = FALSE

82 Version 1.00

Chapter 7. Blind Modules

- L * 2 L - H H - - / D2 D2_TOGGLE = TRUE

- L * 2 L - H H - - * 3 D2_TOGGLE = FALSE

*1 in transition in the automatic mode, the outputs PO and AO are set to the last value of POS and AN.

*2 Double click

*3 Output pulse for one cycle

*4 Single click, is blind moves in one direction for MAX_RUNTIME

*5 angle and position are not transferred if the variable MASTER_MODE = TRUE.

The output of STATUS is compatible and ESR are status messages about
state changes.

STATUS Meaning

130 Standby mode

131 Manual Standby

132 manually up

133 manually down

134 Single-clicking up

135 single-click down

136 IN = TRUE forces values

137 Double-clicking position 1 is hit

138 Double-click position 2 is hit

139 Force Automatic Mode

The following example shows the structure of a blind controller with the
module BLIND_INPUT and BLIND_CONTROL:

83 Version 1.00

Chapter 7. Blind Modules

The use of other BLIND modules is optional and is used to extend the func-
tionality. BLIND_INPUT and BLIND_CONTROL gives a full blind control.

BLIND_INPUT can decode a double click at the two inputs S1 and S2 and
turn the two outputs D1 and D2. These outputs can be used downstream
function blocks or to control any other event.

Master Mode:

With the variable MASTER_MODE = TRUE, the master mode is turned on.
The master mode prevents that the angle ANG and position POS will be
transfered to the outputs AO and PO in Standby Mode 130. Blind modules
which are between the input and Control modules can switch the position
of the shutter and the shutter remains after the change in the new positi-
on (if MASTER_MODE = FALSE). However, if the variable MASTER_MODE =
TRUE ensures that after an automatic stop by downstream modules the
Blind Input resets again to the old position. If MASTER_MODE = FALSE in
the state 130 the POS and ANG is transmitted in on the outputs of PO and
AO. Is MASTER_MODE = TRUE the last valid value remains at the STATUS
130 on the outputs PO and AO and the inputs of POS and ANG are not
transferred. The module BLIND_INPUT thus retains the last valid BLIND_IN-
PUT position.

7.6. BLIND_NIGHT

Type Function module

Input UP: BOOL (Input UP)

DN: BOOL (input DOWN)

S_IN: BYTE (ESR compliant status input)

PI: BYTE (input value of the blind position in automatic mode)

AI: BYTE (input value of the blade angle in automatic mode)

84 Version 1.00

Chapter 7. Blind Modules

E_NIGHT: BOOL (Automatic night service on)

E_DAY: BOOL (automatic day service onπ)

Setup SUNRISE_OFFSET: INT (ofset from sunrise in minutes)

SUNSET_OFFSET: INT (ofset by the sunset in minutes)

T1: TOD (earliest point in time for night-shade)

T2: TOD (the latest point in time for night-shade)

T3: TOD (earliest point in time for day position)

T4: TOD (latest point in time for day position)

NIGHT_POSITION: BYTE (position for night service)

NIGHT_ANGLE: BYTE (angle for night service)

DAY_POSITION: BYTE (position for day position)

DAY_ANGLE: BYTE (angle for day position)

RESTORE_TIME: TIME (time to hit the day position)

IN/OUT CX: CALENDAR (data structure for local time)

Output QU: BOOL (motor up signal)

QD: BOOL (motor down signal)

STATUS: BYTE (ESR compliant status output)

PO: BYTE (output value of the blind in automatic mode)

AO: BYTE (output value of the blade angle in automatic mode)

NIGHT: BOOL (TRUE between sunset and sunrise)

BLIND_NIGHT serves to close the shutters or blinds at night. The module
automatically closes the blind after sunset with a delay of SUNSET_OFFSET
and the blind goes up after sunrise with a delay of SUNRISE_OFFSET again.

85 Version 1.00

Chapter 7. Blind Modules

The opening and closing can be unlocked separately with E_NIGHT for clo-
se and E_DAY for open. If, for example E_NIGHT set to TRUE and E_DAY
not, so in the evening at dusk the blinds shuts down, but it must be ope-
ned the next morning manually. If E_NIGHT and E_DAY are not connected
so both set internally to TRUE. To identify the corresponding periods, the
module requires an external data structure of type CALENDAR. UP, DN and
S_IN the inputs from other BLIND modules and are passed in the day mode
to the outputs QU, QD and STATUS. The signals PI, AI and PO, AO pass the
values for the position and angle of the blind to the following modules. In
the night mode at the outputs of PO and AO the values for night mode are
passed, any manual operation deletes the automatic night mode. If E_DAY
= TRUE, at the end of the night the defned day mode with DAY_POSITION
and DAY_ANGLE is restored. The time RESTORE_TIME is the maximum
time to reach the day position.

The input and output S_IN STATUS are ESR compliant outputs and inputs.
In Input S_IN the upstream functions report their status to the module, this
status will be forwarded to the output of STATUS, and own status messa-
ges also issued on STATUS.

STATUS Meaning

0 no message

141 Night mode

142 day position will be reached

NNN forwarded messages

The following graphic shows the interconnection with other modules of
BLIND_NIGHT for blind control:

BLIND_NIGHT Timing Diagram

86 Version 1.00

Chapter 7. Blind Modules

The timing diagram shows a course of a day. The times T1 and T2 defne
the allowed range for the beginning of the night shade, T3 and T4 defne
the appropriate area for the restoration of the day position. The day and
night position is predetermined by the setup values DAY_POSITION,
DAY_ANGLE, NIGHT_POSITION and NIGHT_ANGLE. Using two release inputs
E_DAY and E_NIGHT, the night shade and the days position are unlocked
separately. Thus, for example if E_NIGHT = FALSE and TRUE = E_DAY the
module can be used in the morning to bring the blinds in the specifed
days position.

7.7. BLIND_SCENE

Type Function module

Input UP: BOOL (Input UP)

DN: BOOL (input DOWN)

S_IN: BYTE (ESR compliant status input)

PI: BYTE (input value of the blind position in automatic mode)

AI: BYTE (input value of the blade angle in automatic mode)

ENABLE: BOOL (enable input for scenes)

SWRITE: BOOL (write input scenes)

SCENE: BYTE (number of the scene)

Output QU: BOOL (motor up signal)

QD: BOOL (motor down signal)

STATUS: BYTE (ESR compliant status output)

PO: BYTE (output value of the blind in automatic mode)

87 Version 1.00

Chapter 7. Blind Modules

[fuzzy] AO: BYTE (output value of the blade angle in automatic
mode)

BLIND_SCENE stores up to 16 scenes consisting of relevant current blind
position and angle, and can restore these scenes during retrieval. Every
scene can be active or inactive, depending on whether saving the scene
the input ENABLE was TRUE or not (ENABLE = TRUE means active). A sce-
ne is retrieved by the number of the scene (0 .. 15) is applied at the input
SCENE and simultaneously ENABLE is set to TRUE. A scene can only be ac-
cessed if both the inputs UP and DN are the same TRUE (automatic mode).
This ensures that an active scene always overridden by the manual mode
of operation is.

The following table illustrates the operation of BLIND_SCENE:

UP DN ENABLE SWRITE SCENE QU QD PO AO

1 1 0 0 - 1 1 PI AI no scene

- - 1 1 y - - - - write scene number y

- - 0 1 y - - - - disable scene number y

1 1 1 0 y 1 1 - - recall scene number y

The input S_IN and output STATUS are ESR compliant inputs and outputs,
through input S_IN upstream modules report their status to the module,
this status will be forwarded to the output of STATUS, and own status mes-
sages issued also on STATUS.

STATUS Meaning

160 .. 175 scenes 0..15 active

176 Scene written

88 Version 1.00

Chapter 7. Blind Modules

NNN forwarded messages

The following graphic shows the application of BLIND_SCENE with other
modules to control a blind:

7.8. BLIND_SECURITY

Type Function module

Input UP: BOOL (Input UP)

DN: BOOL (input DOWN)

S_IN: BYTE (ESR compliant status input)

PI: BYTE (blind position in automatic mode)

AI: BYTE (slat angle in automatic mode)

FIRE: BOOL (input for fre alarm)

WIND: BOOL (input for wind alarm)

ALARM: BOOL (input for intrusion detection)

DOOR: BOOL (input for door contact)

RAIN: BOOL (input for rain sensor)

Setup ALARM_UP: BOOL (default direction at ALARM Default = Up)

WIND_UP: BOOL (default direction at wind, Default = Up)

RAIN_UP: BOOL (default direction at rain, Default = Down)

Output QU: BOOL (motor up signal)

QD: BOOL (motor down signal)

STATUS: BYTE (ESR compliant status output)

89 Version 1.00

Chapter 7. Blind Modules

PO: BYTE (output value of the blind in automatic mode)

AO: BYTE (output value of the blade angle in automatic mode)

 BLIND_SECURITY makes sure the blinds drive either up or down when cer-
tain events occur. The inputs UP and DN control a downstream module
BLIND_ACTUATOR over the outputs of QU and QD. With the inputs FIRE,
WIND, RAIN ALARM the inputs UP and DN are overwritten and the blinds
drive either completely up or completely down. This FIRE has the highest
priority followed by WIND, Alarm and with the lowest priority RAIN. Rain
can be overridden as the only one by manual inputs UP and DN. Therefore,
if the user should decide to remain open the blind despite the rain, he
must interrupt the rain mode only by a short press of the UP or DN. FIRE
drives the shutter to the top while RAIN, Wind and Alarm are confgurable
for up or down. ALARM is confgured using the setup variables ALARM_UP
for both high and down drive, the setup variable WIND_UP specifes whe-
ther to run in Wind up or down. The variable RAIN_UP determine what po-
sition will be approached at Rain. The default values are UPfor Alarm, UP
for Wind and DNfor Rain. The setup variables can be changed by dou-
ble-clicking the icon at any time.

The input and output S_IN STATUS are ESR compliant outputs and inputs.
In Input S_IN the upstream functions report their status to the module, this
status will be forwarded to the output of STATUS, and own status messa-
ges also issued on STATUS.

STATUS Meaning

0 no message

111 Fire

112 Wind

113 Burglar alarm

114 Door alarm

90 Version 1.00

Chapter 7. Blind Modules

115 Rain

NNN forwarded messages

The following graphic shows the application of BLIND_SECURITY with
BLIND_ACTUATOR for controlling a blind:

BLIND_SECURITY must necessarily used directly on BLIND_CONTROL. If
other modules are installed between BLIND_SECURITY and BLIND_CON-
TROL the security functions can not be guaranteed.

7.9. BLIND_SET

Type Function module

Input UP: BOOL (Input UP)

DN: BOOL (input DOWN)

S_IN: BYTE (ESR compliant status input)

PI: BYTE (blind position in automatic mode)

AI: BYTE (slat angle in automatic mode)

IN: BOOL (input for fre alarm)

PX: BYTE (input for wind alarm)

AX: BYTE (input for intrusion detection)

Setup OVERRIDE_MANUAL: BOOL (allows manual Override if
TRUE)

RESTORE_POSITION: BOOL (IF TRUE restore old position)

RESTORE_TIME: TIME (duration for the restore of last position)
 Default = T#60s)

91 Version 1.00

Chapter 7. Blind Modules

Output QU: BOOL (motor up signal)

QD: BOOL (motor down signal)

STATUS: BYTE (ESR compliant status output)

PO: BYTE (start value of the blind)

AO: BYTE (start value of the slat angle)

BLIND_SET can be used anywhere in a BLIND application to accelerate a
defned position (PX, AX). Using the setup variable OVERRIDE_MANUAL de-
fnes if the module may override a manual operation. If the variable RE-
STORE_POSITION is set to TRUE, the module remembers the last position
and drive to this position automatically after a forced operation. The varia-
ble RESTORE_TIME determines how long the module remains active to re-
store the last Position again. If not set RESTORE_POSITION the forced
state remains when switch back in the automatic mode.

State table of BLIND_SET:

UP DN PI

AI

IN AX

AX

QU QD STATUS PO

AO

MANUAL_

OVERRIDE

1 1 X 0 - 1 1 S_IN X - Standby

1 1 - 1 Y 1 1 178 Y - Forced position

- - - 1 Y 1 1 178 Y 1 Forced position

- - - - - 1 1 179 Z - Restoreoldposition

0 1 X - - 0 1 S_IN X - Manual operation

1 0 X - - 1 0 S_IN X - Manual operation

0 0 X - - 0 0 S_IN X - Manual operation

92 Version 1.00

Chapter 7. Blind Modules

7.10. BLIND_SHADE

Type Function module

Input UP: BOOL (Input UP)

DN: BOOL (input DOWN)

S_IN: BYTE (ESR compliant status input)

PI: BYTE (blind position in automatic mode)

AI: BYTE (slat angle in automatic mode)

SUN: BOOL (input signal from the solar sensor)

I / O CX: CALENDAR (current time and calendar data)

Setup SUNRISE_OFFSET: TIME (delay at sunrise)

SUNSET_PRESET: TIME (delay at sunset)

DIRECTION: REAL (facade orientation, 180 ° = south facade)

ANGLE_OFFSET: REAL (Horizontal Aperture

Shading)

SLAT_WIDTH: REAL (width of the slats in mm)

SLAT_SPACING: REAL (distance of the slats in mm)

SHADE_DELAY: TIME (delay time of shading)

SHADE_POS: BYTE (position for shading)

Output QU: BOOL (motor up signal)

QD: BOOL (motor down signal)

STATUS: BYTE (ESR compliant status output)

PO: BYTE (blind position in automatic mode)

AO: BYTE (slat angle in automatic mode)

BLIND_SHADE calculate the appropriate angle of the slats from the current
position of the sun to guarantee an optimum shading. The slats are
tracked to the sun, th ensure over the course of the day always shading.

93 Version 1.00

Chapter 7. Blind Modules

With the input ENABLE the function is activated when UP and DN (automa-
tic mode) are active. The module evaluate the INPUT SUN, which displays
sunshine when TRUE. If SUN or ENABLE gets FALSE then the device swit-
ches of automatically. SUNRISE_OFFSET defne after which time lag after
sunrise, the shading is active. SUNSET_PRESET determines a what time
before sunset the shading is stopped. The shading is active if SUN = TRUE,
ENABLE = TRUE, UP = TRUE, DN = TRUE, and the horizontal sun angle is
within the range DIRECTION - ANGLE_OFFSET and DIRECTION +
ANGLE_OFFSET, and the day time is within the area defned by SUNRISE,
SUNRISE_OFFSET, SUNSET SUNSET_PRESET. DIRECTION specifes the ori-
entation of the facade, 180° means façade is south, 90° in the east and
270° in the west. With the setup variable SHADE_DELAY is determined
how long after SUN is FALSE the shading remains active. The default value
is 60 seconds. SHADE_DELAY prevents the case of constantly running up
and down while partial cloud cover the blind. When using BLIND_SHADE
make sure that the cycle time for the module is smaller as T_ANGLE / 512
* SENS. SENS is here the SENS value of the BLIND_CONTROLLERS. If the
cycle time is too large, the blind will start irregular driving. The setup va-
riable BLIND_POS specifes how far the blind can drive down when shado-
wing.

The following graphic describes the geometry of blind:

94 Version 1.00

Chapter 7. Blind Modules

The following chart shows an east to south-facing facade with DIRECTION
= 135° and ANGLE_OFFSET = 65°:

The shading function calculates the angle of slats so that the slats only
close as far as the sun is shaded, but still as much light as possible enters
the room. With the values DIRECTION and ANGLE_OFFSET the horizontal
angle of the sun which requires a shading is calculated. Depending on the
thickness of the wall and the width of the window the ANGLE_OFFSET can
be set so that unnecessary shading is avoided. By DIRECTION of the direc-
tion of the facade is specifed. Using the dimensions of the slats, width and
distance in millimeters (SLAT_WIDTH and SLAT_SPACING) the module cal-
cuates how far the slats should be tilted to avoid the sun. The target is to
tilt the slats as far as absolutely necessary in order to guarantee optimal
lighting conditions. To not infuence the mood and light conditions at sunri-
se and sunset, an OFFSET of the sunrise and a PRESET before the sunset
can be adjusted. With an ofset of 30 minutes and a preset of 60 minutes,
for example, the shading started 30 minutes after sunrise and already f-
nished 60 minutes before sunset. The input SUN of the module is to
connect a solar intensity sensor or any suitable sensor which interrupts the
function if there is no solar radiation.

The following graphic illustrates the shading:

The input and output S_IN STATUS are ESR compliant outputs and inputs.
In Input S_IN the upstream functions report their status to the module, this
status will be forwarded to the output of STATUS, and own status messa-
ges also issued on STATUS. BLIND_SHADE report on the output STATUS the
STATUS 151 when the shade is active.

The following example shows the application of BLIND_SHADE within a
blind control:

95 Version 1.00

Chapter 7. Blind Modules

7.11. BLIND_SHADE_S

Type Function module

Input UP: BOOL (Input UP)

DN: BOOL (input DOWN)

S_IN: BYTE (ESR compliant status input)

PI : BYTE (default of position)

ENABLE: BOOL (shading enabled)

SUN: BOOL (input signal from the solar sensor)

HORZ1: REAL (horizontal sun angle

Shading start) [100.0]

HORZ2: REAL (horizontal sun angle

Shading end) [260.0]

VERT: REAL (vertical shading angle) [90.0]

ALERT: BOOL (forced opening of the blinds) [FALSE]

I / O CX: CALENDAR (current time and calendar data)

Setup SUNRISE_OFFSET: TIME (Delay at sunrise) [T#1h]

SUNSET_PRESET: TIME (Delay at sunset) [T#1h]

SHADE_DELAY: TIME (Delay of shading) [T#60s]

SHADE_POS: BYTE (maximum position for shading)

Output QU: BOOL (motor up signal)

QD: BOOL (motor down signal)

STATUS: BYTE (ESR compliant status output)

PO: BYTE (blind position in automatic mode)

96 Version 1.00

Chapter 7. Blind Modules

BLIND_SHADE_S is a much simpler function of BLIND_SHADE specifcally
for use with roller blind. Here no slat angle for shading must be calculated,
but simply ensure that when the sun shines the blind closes far enough.

In the inactive state of the module the inputs UP, DN, and PI S_IN passed
unchanged through to the outputs QU, QD, PO and STATUS.

The module is activated, if UP = TRUE, DN = TRUE, ENABLE = TRUE and
SUN (for at least SHADE_DELAY) = TRUE. If these conditions are met, the
module checks whether the current horizontal sun angle is in the range
between HORZ1 and HORZ2 and the vertical sun angle is lower than VERT.
Is now also the current time between sunrise + SUNRISE_OFFSET and sun-
set - SUNSET_PRESET, then the module moves in the STATUS 151 (sha-
ding) and is ensuring that the value issued at output PO, not greater value
than SHADE_POS (PO is then the minimum of PI and SHADE_POS).

For the angle HORZ1 and HORZ2 is valid: 90° = East, 180° = South, 270°
= West.

SHADE_DELAY prevents a permanent up and down move when partly
cloud cover the blinds.

With the input ALERT for example, can be achieved (in a simple manner)
that the roller blind goes up when the door opens. The ALERT input has
the highest priority in the module, forces STATUS = 152 independent of
the inputs and sets QU = TRUE, FALSE = QD, drives therefore manually UP.

Within a blind control the BLIND_SHADE are used as follows:

97 Version 1.00

Chapter 7. Blind Modules

index of modules
ACTUATOR_2P.. 12
ACTUATOR_3P.. 13
ACTUATOR_A.. 15
ACTUATOR_COIL...16
ACTUATOR_PUMP.......................................16
ACTUATOR_UD...17
AIR_DENSITY.. 22
AIR_ENTHALPY...22
AUTORUN... 19
BLIND_ACTUATOR......................................74
BLIND_CONTROL.. 75
BLIND_CONTROL_S....................................78
BLIND_INPUT.. 80
BLIND_NIGHT...84
BLIND_SCENE... 87
BLIND_SECURITY.. 89
BLIND_SET...91
BLIND_SHADE..93
BLIND_SHADE_S... 96
BOILER... 23
BUILDING_VERSION....................................11
BURNER...25
CLICK... 47
CLICK_MODE..49
DEBOUNCE...49
DEW_CON..29
DEW_RH... 29
DEW_TEMP... 31
DIMM_2.. 50

DIMM_I... 52
F_LAMP...54
HEAT _TEMP...33
HEAT_INDEX... 32
HEAT_METER.. 32
LEGIONELLA... 35
PULSE_LENGTH..56
PULSE_T... 56
SDD..38
SDD_NH3...39
SDT_NH3.. 39
SW_RECONFIG..57
SWITCH_I..58
SWITCH_X..59
T_AVG24..39
TANK_LEVEL... 41
TANK_VOL1..42
TANK_VOL2..42
TEMP_EXT..43
TIMER _ 1... 60
TIMER_2... 60
TIMER_EVENT_DECODE.............................. 62
TIMER_EXT... 63
TIMER_P4...65
WATER_CP.. 45
WATER_DENSITY...45
WATER_ENTHALPY...................................... 46
WCT... 46

98 Version 1.00

	1. Legal
	1.1. Disclaimer
	1.2. License Terms
	1.3. Registered trademarks
	1.4. Intended Use
	1.5. Other

	2. Introduction
	2.1. Objectives
	2.2. Conventions
	2.3. Test environment
	2.4. Releases
	2.5. Support

	3. Others
	3.1. BUILDING_VERSION

	4. Actuators
	4.1. ACTUATOR_2P
	4.2. ACTUATOR_3P
	4.3. ACTUATOR_A
	4.4. ACTUATOR_COIL
	4.5. ACTUATOR_PUMP
	4.6. ACTUATOR_UD
	4.7. AUTORUN

	5. Heating, Ventilation, Air Condition
	5.1. AIR_DENSITY
	5.2. AIR_ENTHALPY
	5.3. BOILER
	5.4. BURNER
	5.5. DEW_CON
	5.6. DEW_RH
	5.7. DEW_TEMP
	5.8. HEAT_INDEX
	5.9. HEAT_METER
	5.10. HEAT _TEMP
	5.11. LEGIONELLA
	5.12. SDD
	5.13. SDD_NH3
	5.14. SDT_NH3
	5.15. T_AVG24
	5.16. TANK_LEVEL
	5.17. TANK_VOL1
	5.18. TANK_VOL2
	5.19. TEMP_EXT
	5.20. WATER_CP
	5.21. WATER_DENSITY
	5.22. WATER_ENTHALPY
	5.23. WCT

	6. Electrical Engineering
	6.1. CLICK
	6.2. CLICK_MODE
	6.3. DEBOUNCE
	6.4. DIMM_2
	6.5. DIMM_I
	6.6. F_LAMP
	6.7. PULSE_LENGTH
	6.8. PULSE_T
	6.9. SW_RECONFIG
	6.10. SWITCH_I
	6.11. SWITCH_X
	6.12. TIMER _ 1
	6.13. TIMER_2
	6.14. TIMER_EVENT_DECODE
	6.15. TIMER_EXT
	6.16. TIMER_P4

	7. Blind Modules
	7.1. Introduction
	7.2. BLIND_ACTUATOR
	7.3. BLIND_CONTROL
	7.4. BLIND_CONTROL_S
	7.5. BLIND_INPUT
	7.6. BLIND_NIGHT
	7.7. BLIND_SCENE
	7.8. BLIND_SECURITY
	7.9. BLIND_SET
	7.10. BLIND_SHADE
	7.11. BLIND_SHADE_S

