OSCAT
Network:LIBRARY
Documentation In English

Version 1.21

Chapter

Table of Contents

3 I 0= c - 1 7
N O I T Yol =11 = oS 7
N I8 o] =Y 0 1Y =T =T 1= 7
G O 1 1= T [T 1T PPN 8
1.4, _Registered trademarks. ..o e 8
0 S) o 1= 8

2. INtrodUucCtioN....cccucercueessnssnsessnsnssssnsnnsnsnssnsnssnsnssnsnsnnnnsnnnnnnnnnnnnnn D

2 R O] o =T ot A= 9
DA A O 01 81V 1 1[0 1= PPt 10
2.3._Test environment and CONAITIONS......c.oiviiiiiiii e 11
2.8, REIBASES. i e 12
B2 TR YU o] oY1 e PP 13
3. DEemMO-Programs......cuueccessssssssssssssssssssssssssssnssssssssnsnnsssnssnnnnnnsn 14
O 700 N =Y o' Vo T o) 0 Yo 1= 0 0 P 14
4. Data Types of the NETWORK-Library.....ccovvrciiircinrncssnsssnnnsnnss 16
4.1, _DLOG DATA. ettt ettt et e et e et e et e n e e e e e e e e e e e raae 16
4.2._US_LOG _VIEWPORTc.oioveieeietteeeete et eteeteeteeteeteeteeteete et e s e s e s e e eaeeaeateateetesteeteeteseeseenen 16
TS U 17
4.4._US_TN_INPUT_CONTROL......cueiueieeiereeeeeseeseeseeseeseesessestsstestestestesessessasessessessessessesnes 17
4.5._us TN_INPUT CONTROL DATA. ..ottt ettt e e e e e e e at e e eaa s 18
4.6._US_ TN _MENU....iitiiiiitiiiiiis e e e e e r e e e et e e e e et n et e e aa e e aans 19
4.7._US_TN_MENU _POPUP........oouiiiiieieeteeeee ettt ettt e te ettt et et e e ae e ere e 20
4.8._US TN _SCREEN.ttt ettt ettt e e et e e e et e e e et r e e e etb e e e earan s 21
4.9, _FILE PATH DATA. .. it ettt et e e e e e e e et e et e enreen s e en e e e e eeneeenaennns 22
4.10._FILE_SERVER AT A. ... it ieiiit et e e e ettt et e et e e e e e e e e e en e en e e aneeaneeaneeaneennnns 22
I R | 2 = TS 22
s 1 23
4.13._IP_FIFO DATA. ...ttt e et e e e et e e e et e e e et e e e e e e e eaaa s 24
o S @ T I @] 1 {1 S STPP 24
L T 1 = I Y/ U 7N N P 25
4.16._PRINTE _DATA. ... oottt ettt ettt e ettt e e ettt e e e e tb e e e e bbneaeetb e e eeernnas 25
4.17._UNI_CIRCULAR BUFFER DATA. .. oot e ettt e et e et e e e e e e s e e eneeaeees 26
S YA AN o LN TP 26
4,19, XML _CONTROL .. ttttuitttuitetttettteeat e et ettt e e et e e st e et e et e e et e e et e e et et e e et e e et neeanneaaan s 27
4.20._WORLD WEATHER DATA. ... ittt ieet e eae et e e e e e e e e e e e e e enne et aeen s aenaaenanennss 28

2 Version 1.21

Chapter

4.21._YAHOO WEATHER DATA.....ccteeiteeeteeeteeeeteeetteeetteeetee e et e e etaeeetaeeeteeaebeeebeeateeanaeeaneas 29
5. Other FUNCHIONS . uiiiiririrteueuesesnsnsnsnsnsnsnsnsnsnssssnsnsnsnsnsnsnsnsnnnnnnnn 34
5.1._ELEMENT COUNTuutiieitiee ettt e e ettt e e ettt e e ettt e e etee e e et e e e eat e e e e aae e e enteaeeeateeeanbeeeeenaeeeannes 34
5.2 ELEMENT GET ..o iuiiieitiee ettt e ettt e ettt e ettt e e et e e e et e e e et e e e eate e e e etaeeeestaeeasteeesaseeeeaneeee e, 34
5.3._NETWORK VERSION......00eiiiutiieiitieeeitieesitteeeateeeeeteeseetteeeeaeesaeseeessseeesasseeeseseesssnneeas 35

6. DeEVICE DIIVer .. iicutrasssssnsnssssnssnsnssssnssssnsnssssnssnsnssnnnssnsnsnnnnnnnnn 30

B. 1. _IRTRANS. ... oot e e e e e e e e ee s 36
6.2._IRTRANS DECODE.cciciiitiiieeeiitiieeeeeitreee e e s ebtaeeeesstareeeesaaraeeeesabbaeeeesabrreeeesasreeens 36
6.3._IRTRANS ROV _L..iiiiiiiiiiiiieeiiiiie e e e e ettt e e e e ettt e e e e s et e e e e e ettt e e e e e s eabbaeeeesaabbaeeeesenabaeeeeeansens 37
6.4._IRTRANS ROV _4....iiiiiiiiieitiie ettt e ettt e et e e ettt e e ettt e e et e e e ebt e e e s bee e e aabaeeatteeesabaeeeanteeeaanes 39
6.5._IRTRANS ROV _8....iiiiiuiiiiiiiee e ittt e e ettt e ettt e e et e e ettt e e st e e e bt e e e s bt e e e saba e e s bt eeesnbaeeeanteeennens 39
6.6._IRTRANS SERVER........ccutiiiiiiiitieeee e ittt e e e s ettt e e e e s ettt e e e e e s eaaae e e e e s etbbaeeeeesaaaeeeessenbeaeeesenens 40
6.7._IRTRANS SND _L...uiiiieiiiiiieeeiiitieeeeeitttee e e e e ettee e e e s eetae e e e e s ssareeeesaabaeeeessnbraeeessnsneaeesannes 42
6.8._IRTRANS SND 4ciiiiiiiiieeeeiitiee e e eeite e e e e e eteee e e e ettt eeeessatbreeeesaeabaeeeesseabraeeeseabreeeesannes 43
6.9._IRTRANS SND _8....eiiiiiiiiiieeeiiitie e e e e ettt e e e ettt e e e e e e et e e e e e eetb e e e e s eeabaeeeeesabaeeeeseaaaeeeeeannes 44
7._Data LOgger...coviressmrsssnsnsssnnsnssnsssssnsssssssssssssnsssnnnsssnnnssnnnnnnnns 46
2 0N 0 1T = 2 T 46
7.2._DLOG BOOL.uuuiiieiitiiieeeeiitttee e e e eettee e e e s et e e e e s et a e e e e s ebba e e e e s sbbaeeeessabaeeeeeeeabreaeesanraaeens 48
7.3._DLOG DINT . .tiiiiuttieetie e e ettt e et e e e et e e et b e e e et e e e e eat e e e saba e e e eabeeeasteeeeesbeeeabseeesnbeeeareeeeanreas 49
2 0 1N 6 T I o 1 R OOPRRR 50
7.5, DLOG _REAL....eiiiiittiiie e e ettt e e ettt e e e ettt e e e e et e e e e e et e e e e s e tbe e e e e s sab e e e e e e e nbbeeeeeanntaaeeeans 51
7.6._DLOG _STRING.....cccutiieitieeeitiee e ettt e e ette e e et e e e st e e e e sateeesbaeeaetaeeeasbaeeeatteeesbeaeaasbeeeareeeaas 52
7.7._DLOG_STORE_FILE_CSV...uiiiiiiiiiiiiii e e ittt e e ettt e ittt e e e e et ae e e e e et ae e e e s aaa e e e e e ebbaaeeaans 52
7.8._DLOG_STORE_RRD.....uiiiiiiiitiiiiee ittt e e e s ittt e e e e ettt e e e e e ettt e e e e e e iabee e e e s aiabaeeeesabbraeeesasaneeas 54
7.9._DLOG _FILE_TO FTP..uttiiiiiiiitiieeeeeeitttee e e e etttee e e e e etate e e e s et e e e e s abaaeeeesabbaeeeesensbaeeeesannraeas 63
7.10._DLOG _FILE_TO SMTP....uitiiiieiiitiieeeeeeittte e e e e ettt e e e e etaaeeeesenbaaeeeesabaaeeessasbaaeeeesenbaaeeeans 66
7.11._UNI_CIRCULAR BUFFER.......ccciitiiiiiitiieiitieeeetteeeetieeeette e e sate e e aetteeestae e s saaeeeaareeesnaeeeas 69

8. CoNVerter.....cucuirienrsesnssnsnssnsnssnsnssnsnssnsnssnanssnsnsnnsnnnnnnsnnnnsnnnnns? 2

8.1 _BASEBA......oiiiiiiiii 72
8.2._BASEG4 DECODE _STR......uiiituiiiiiiiiiii ittt et s e s e s ara e 72
8.3._BASE64 DECODE STREAM......ouiiiiiiiiiiiiiicii e 73
8.4. _BASEGA ENCODE_STR. . iituiiitiiiiitiietee e ee ettt r e e e e e e e e e eae s 74
8.5._BASEG64 _ENCODE_STREAM. .. oottt et 74
8.6._HTML DECODE.iitiiiitiiieii ettt et et et e e e e e e e e e e e e eees 75
8. 7. _HTML ENCODE..... ettt ettt e e e e e e e e e enes 76
8.8._IPA CHECK. ... ittt 77
8.9._IP4 DECODE.......ciiiiiiiiiiii i 77

Version 1.21

Chapter

8.10.
8.11.
8.12.
8.13.
8.14.
8.15.
8.16.
8.17.
8.18.
8.19.
8.20.
8.21.
8.22.
8.23.
8.24.

IP4_TO _STRING......evvveieieeeeeeeesesesteeee s st e s es s st es st es st s s enn e 78
IS_IPL. ...ttt 78
IS_URLCHR ...ttt ettt s s e s sttt ettt ettt ee s s s 79
MD5_AUX. ...t teseeeseseeees s ses st s s eee s s st et n ettt n sttt n ettt 79
IMDS_STR. ..ot eeeeeee et s s e ees e e e eeeee s e ee et ee e e s e e ee e et e et ee e s et et e e et ee e 80
MD5_STREAM.vovoeeieeeeeeeeseseeeee s s et es st et s st es s s et s s senen s 80
MD5_TO_STRH.....cuvvieieeieeeeeessesestesesseses st s seseeses s sessee s s ses st s e sessesenneeee s enenens 82
RCA_CRYPT_STREAM........ovveereeessessseseseesesesesese sttt en s s s s s s s, 82
SHAL_STR...eeeeeteteeeeeee et e s s ee et es sttt es s et s e s et et en s e e s s e st esen st en s 83
SHATL_STREAM. ...t e e ettt 84
SHAL TO_STRH. .. .eiveereeeeeees et ettt ettt ettt en s s s e s e s, 85
STRING_TO _URL......oeveaieeeeseeeeeeseeeeeeeeeessesesessesseses st s eses s st sennentesesenneneesns 86
URL _DECODE.eeeieteeeeeeeeteeeee e ee ettt et ettt n s st e ettt esesenns 87
URL_ENCODE. ...t eeeeeee e es st s sttt en s en st en s s e 87
URL_TO_STRING.cuvvveeieeiestesssesestetesesesessssessesesessennesessssesneses et ennentstesenneneeeans 87

9. Network and CommunicatioN.....c.cevrerererarerarsnsnsnsnsnsnsnsnsnsnsnsnsO9

9.1, DNS_CLIENT ... eeeeeeeeeeeeeeeeeee et e et s et e s s en e en e 89
9.2._DNS_REV_CLIENTouvivteeeeieeeeeeeesseeee e s st tes et e e s st s e 90
9.3, DNS_DYN. ... eeeeeee e ettt e et e et 92
9.4 _FTP_CLIENT ...ovveeeeeeeeee ettt n et e et e e, 94
9.5._GET_WAN _IP. ..ottt ee ettt e s ee st e et 96
9.6 _HTTP_GET ..ottt ettt n et 98
Y A 1= Y110 RPN 99
9.8._IP_CONTROL.o.voeeeeieeeeieseseee et ee st s st s st es st es e st en s st ennenenies 101
9.9._IP_CONTROL2.veeteieeeeeeeeeeeeeee ettt s ettt en s 107
9.10._IP_FIFO . .e.eeeeeeeeeeeeee e ettt 108
9.11._LOG_MSG.eeeeeeeeeeeeee ettt e e, 111
9.12._LOG_VIEWPORTeveeeeeeeeeeeeeseeeeeeeee s st ee e e en s ee et 111
9.13._MB_CLIENT (OPEN MODBUS).......eeveveeeeeeeeeseeseeeeeeeeeee e seee e s s en s 112
9.14._MB_SERVER (OPEN-MODBUS)..........euiueeeeeeeeseeeeeeeeeseeeeeesesee s s eseeeeneees e, 116
9. 15._MB_VMAP.ottt ettt ettt 118
9,16, _PRINT_SF.....ovireieieteeeeeseeteseeeeee et es e et es et en s et en st en et eeesen st 121
9.17._READ_HTTP....ovvteeeeeeeeeeee ettt en e 122
9.18._SMTP_CLIENT .. .vvteeeeeeetee ettt ee et s st e st en st en s ennan. 123
9,19 SNTP_CLIENT ... veteeeeeeeeeeee e e eee e ee et e et e e e en s 127
9.20._SNTP_SERVERoeeeeieeeeeeeeeeeeeeeeeee s s e e ee s st ee s e ee st 128
9.21._SPIDER_ACCESS.eeeeeeeeeeee et 129
9,22 SYS_LOG ..ottt 131
Y03 T 1 =111 =2 A 10 YOO 135
9,24 _TELNET _PRINT......oruiuiteeeeeseseeteseeeseseetesesese s tes s se e eses s seseetes s sesees s s neees s enenees 137
9.25._ XML _READER.........cocviteeeieeeeeeeeseseeteees s ee et et et es et en st 140

Version 1.21

Chapter

10. File-SyStem.....ccccvvrirrsnmsssnsnsssssssssssssssssssssnsssnnssnnssnnsnnnnnnns 147
10.1._CSV_PARSER BUFcccuuiiiitiieietieeeeette e e etee e e ette e e et e e e ette e e e eaae e e entaeesentaeeabaeeeenteeeennes 147
10.2._CSV_PARSER FILE.......oiiiitiiiietiie e et e e et ete e e ete et e et e e et e e e ente e e e tae e e enteeeeeaeeas 149
10.3._FILE_BLOGCK ... ttiiteeeteeetee et e ete e ete e et e e te e et e e eateeett e e eateeebaeesateeebaeeeateeebeeeeaeeanseeenns 152
10.4. _FILE PATH _SPLIT...ctiiiiitie e ettt e e ettt e e et e e et e e et e e et a e e et e e e eaae e e e etaeesanbaeeseraaeesreeeeenes 153
10.5._FILE_SERVER......oiiiitiie ittt e ettt e e ettt e e ettt e e et e e e et e e e et e e e et e e e eate e e e ebeeeesntaeeaesbaeesnreeeans 154
10.6._INI-DATEIENueeeeeeeeeeeeee e e et e e e e et e e e s e e et e e s sea et eessssaeeeessessaeesessssseeeeesssreneessans 159
10.7._INI_PARSER BUF.....ccutiiiittie e et e e ettt ettt ete e e et e e et e e e et e e e tee e e eaaeeeeeneeeeenteeeeeraeeaas 161
10.8._INI_PARSER FILE.......ciiiitiieiitieeeetie e e ettt e e et e e e ettt e e ettt e e e ettt e e e etae e e enteeeeeateeeebaeeaaneeeeanns 164

11. Telnet-ViSiON.....cciuieeessesssssssssssssssssssssssssssnsssnnssnsssnnsnnnsnnnns 167
g O 1 = N = Y ST] OO 167
11.2._ TN _FRAMEWORKutiiiiutieeeettee e ettt e e et e e e ette e e et e e e ete e e e eate e e et e e e enteeeaeaeeeeenaeeeeareeeen 173
11.3._TN_INPUT _CONTROL. ..eiiiiuieeiiurieeiitteeeeteeeeisteeeseseeeesteessesteessbasesastesssseeeesseeeseneens 174
11.4._TN_INPUT EDIT LINE.....uoiiioiiieitieeeeteeeeetteeeeteeeeetteeesetteeeataeesenaeeeseseeeesnseeesaneeeeanns 174
11.5._TN_INPUT_MENU BAR......ccoiieitieeitieeetieeeteeeeteeaeteeeteeateesaeesaaeesateessteesaaeesraeeeseeenes 176
11.6._TN_INPUT_MENU_POPUP........ccctiiitieiteeiteeeteeeteeeteeette e eaeeeetae et eeeteeeeaeeaeaeeeeaee e 178
11.7._TN_INPUT _SELECT POPUP......cciitiieiittie e ettt e e ettt e e e ete e e ettte e et e e e tae e e et e e e tae e e entaeeenees 178
11.8._TN_INPUT _SELECT TEXT..uiiiiiiiieiiuieeeiteeeaitteeeeueeeeesteeesteeeassteeesesseeesnseeesasseeesnseeeas 180
g T VI = = Y = PUR 182
11.10._TN_SEND _ROWS.....coittiieitieeeetiie e ettt e e ettt eeette e e et e e e et e e e aae e e eate e e e eaae e e entaeeeenaeeeanaeas 183
11.11._TN_SC_ADD_SHADOW.......cutiiiiittieeitieeeetieeeeeteeeseteeeseteeessrtaeesetaeeesbaeessraeeesreeeenes 184
11.12._TN_SC_AREA RESTORE.......uutiiittiieiitieee ettt e e eteeeeete e e etee e e ette e e s eraeeesaaeesenteeesreeeans 184
11.13._TN_SC AREA _SAVE.......ciiitiiiieeetie e etee e etee et ete et e et e e et e e e e nte e ente e stteesateeenae s 185
11.14._TIN_SC BOX...uiiiueieuteeiteeeteeeieeeateeette e et e e et e e et e e ebe e e ebe e e eteeebeeebeeanbeesnaeeanteesnaaeaneas 186
11,15, TN SC FILL.utiiiiitiieeeetie e et e ettt e ettt e e et e e e eate e e et e e et e e e entaeeeeateeesnbeeeeenteeeanreeeas 187
11,16, _TIN_SC LINE....uiiiiitiieeitie e et e e ettt e e et e e e et e e e ettt e e et e e e e tte e e e ebteeeanbaaeeetbeeesbaeeesnreeeanees 188
11.17._TN_SC_READ _ATTR....ceituuieeiteeeeitteeeetteesaiteeeaetteesseseesaasesesaseeessisseesssessssseeessseeens 190
11.18._TN_SC READ CHAR.....ccutiiiittie ettt ettt ettt e e et e e e ete e e et e e e et e e e tee e e enteeeevaeeaas 190
11.19._TN_SC_SHADOW ATTR.....utiiiitieeeirieeaiteeeeitteeseteeeaetteeseaaeeseraaeesteessertaessereeeeanses 191
11.20._TN_SC VIEWPORTctteeeetteeeeitteeeiteeeeetteeeeteeeaeteeeesteeesesteeesteeeeasteeeeeseeeeaneeeeaans 191
L1121 TIN_SC WRITE....oiiitiieeuieeeteeecteeeeteeeete e e e e e e e e te e etteeetteeetteeetteeeteeeebeeeeaeeeebeeenseeaseean 192
11.22._TN_SC WRITE_ATTR...utiiitiiiieeiiteeitteeetteeeteeeeateeeteeeeteeestaeeeteeeereeaebeeanaeeaaeesneeannas 193
11.23._TN_SC WRITE_Cooooiouiiieeiie e e ettt e ettt et ettt e et e e et e e et e e e et e e e eate e e snbaeeesaaaeeeeneeas 193
11.24._TN_SC WRITE_CHAR.....ccittiiiittieeetie e e ettt e e ettt e et e e e ette e e et e e e et e e e eateeestreeesntaeeaanas 194
11.25._TN_SC WRITE_EOS....cciitiieiittieeitiee e ittt e s ettt e e eteeeeeteeeseteeeesnteeesesaeeesaaeeeanteeesereeeaas 195
11.26._TN_SC_ XY ERROR......utiiiitiieeiitiie ettt e e et e e e etee e e e ette e e ettt e e e et e e e eteeeeetteeeeaaeeeenteeeennes 195
11.27._TN_SC XY2 ERROR.....eiiiitiiiiitieeiitieeeiteeeseteessiaeeesstteeesesteessttaeeseaeaeesstaeesereaeeaneeas 196

12. Network VariableS......cvcvivuissnsnsnsnsnsnsnsnsnsnssssssnsnsnsnsnsnsnnnsnsl97

I R\ 7 2 S TP 197
12.2._NET VAR CONTROL....cuiiiiniiiiiiiiiie it 199
12.3._NET VAR BOOLS........oiiiiiiiiiiiiiii e 200

Version 1.21

Chapter

12.4.
12.5.
12.6.
12.7.
12.8.

NET _VAR_BUEFER.........ciuiuititieeeeeiteesteteesteestetststesstesssssesesesesenenenennnenenesenenenesenenens 201
NET_VAR_DWORDS.........c..oovevieeeeeeeeeeeeeeeeeeeeeeeeeee e s s s e st enenas 202
NET VAR_REALB.c.eiuieieieieeeseseeeseeeeeseeeeeete et ese st es s s s s s s s st atesaeenans 202
NET_VAR_STRING.......coeveveeeeteeetaseeesesesesesesesesssesesessssseseesssssssseeeseesssateessssssasasennas 203
NET VAR _XB......eeeieeeeeseeeeeeeeteeee et et et et ee et ee e s e en s s sttt es e s 204

13. Weather Data......ccccvcvrencnrnsnsnssnssssnsnssnsnssssnssnsssnssnsnssnsnssnsnss 200

13.1.
13.2.
13.3.
13.4.
13.5.
13.6.
13.7.

MOON_PHASE........vviveesieeseseeesesssese s e et es et ettt ettt es s s s s en s enennenes 206
YAHOO _WEATHER.........ovivrrrrsesseseseseseseseseseesesssessesseesteessesesssesssssasssesesenenennes 207
YAHOO _WEATHER_DESC_DE........ocvivvreeresnssesesesesesesesesesssesessessssseessssssssesennes 210
YAHOO_WEATHER_ICON_OSCAT.......cvveveveeeieeseeteeesesesesesesesenenenenenesesnesenesesenenenaeens 211
WORLD_WEATHER........cocvivveeeeeeeeeeeeeeeeee et eeeeen s es s s s s s se s 211
WORLD_WEATHER_DESC_DE.........ciuiuieieieeeeeeteeseseeesteesseseeesesenenenenenennneseneneneneeens 214
WORLD_WEATHER_ICON_OSCAT........oueuieieieieieseseeeeeseeeseseeeeeees et esenes s en e, 215

14. Visualization.......ccvereueermncesnsnssasnssssnsnssnssssnsnssnsnssnsnsnssnnnnsnsns 210

14.1.
14.2.
14.3.

R ST AT I =1 216
1Y Lo Yo] T 1171 o) L of =S 219
LAY T T ol 7= o 220

Version 1.21

Chapter 1. Legal

1. Legal

Die OSCAT Network Bibliothek definiert neben den Standard Datentypen
weitere Datentypen. Diese werden innerhalb der Bibliothek verwendet,
konnen aber jederzeit von Anwender fur eigene Deklarationen verwendet
werden. Ein Loschen oder verandern von Datentypen kann dazu flhren
das Teile der Bibliothek sich nicht mehr kompilieren lassen.

1.1. Disclaimer

The software modules included in the OSCAT library are offered with the intent to
serve as a template and guideline for software development for PLC according to
IEC61131-3. A functional guarantee is not offered by the programmers and is
excluded explicitly. As the software modules included in the library are provided free
of charge, no warranty is provided to the extent permitted by law. As far as it is not
explicitly arranged in written form, the copyright owners and/ or third parties provide
the software modules “as is”, without any warranty, explicit or implicit, including, but
not limited to; market maturity or usability for a particular purpose. The full risk and
full responsibility concerning quality, absence of errors and performance of the
software module lie with the user. Should the library, or parts of it, turn out to contain
errors, the costs for service, repair and/or correction must be assumed by the user.
Should the entire library, or parts of it, be used to create user software, or be applied
in software projects, the user is liable for the absence of errors, performance and
quality of the application. Liability of OSCAT is explicitly ruled out.

The OSCAT library user has to take care, through suitable tests, releases and quality
assurance measures, that possible errors in the OSCAT library cannot cause
damage. The present license agreements and disclaimers are equally valid for the
software library, and the descriptions and explanations given in this manual, even
when this is not mentioned explicitly.

1.2. License Terms

The use of the OSCAT library is free of charge and it can be utilized for private or
business purposes. Distribution of the library is expressly encouraged; however, this
has to be free of charge and contain a reference to our webpage WWW.OSCAT.DE.
If the library is offered in electronic form for download or distributed on data carriers,
it has to be ensured that a clearly visible reference to OSCAT and a link to
WWW.OSCAT.DE are included accordingly.

7 Version 1.21

http://WWW.OSCAT.DE/
http://WWW.OSCAT.DE/

Chapter 1. Legal

1.3. Intended Use

The software modules included in the OSCAT library and described in this
documentation were exclusively developed for professionals who have had training in
PLC. The users are responsible for complying with all applicable standards and
regulations which come into effect with the use of the software modules. OSCAT
does not refer to these standards or regulations in either the manual or the software
itself.

1.4. Registered trademarks

All the trademarks used in this description are applied without reference to their
registration or owner. The existence of such rights can therefore not be ruled out. The
used trademarks are the property of their respective owners. Therefore, commercial
use of the description, or excerpts of it, is not permitted.

1.5. Other

All legally binding regulations can be found solely in chapter 1 of the user manual.
Deduction or acquisition of legal claims based on the content of the manual, apart
from the provisions stipulated in chapter 1, is completely ruled out.

8 Version 1.21

Chapter 2.

Introduction

2.

Introduction

2.1. Objectives

OSCAT is for " Open Source Community for Automation Technology ".

OSCAT created a Open Source Library referenced to the IEC61131-3 stan-
dard, which can be dispensed with vendor-specific functions and therefore
ported to all IEC61131-3-compatible programmable logic controllers. Alt-
hough trends for PLC in the use of vendor-specific libraries are usually sol-
ved efficiently and these libraries are also provided in part free of charge,
there are still major disadvantages of using it:

1. The libraries of almost all manufacturers are being protected and

the Source Code is not freely accessible, which is in case of a error
and correction of the error extremely difficult, often impossible.

2. The graphic development of programs with vendor-specific libraries

can quickly become confusing, inefficient and error-prone, because
existing functions can not be adjusted and expanded to the actual
needs. The Source codes are not available.

3. A change of hardware, especially the move to another manufactur-

er, is prevented by the proprietary libraries and the benefits that a
standard such as IEC61131 offer would be so restricted. A replace-
ment of a proprietary library of a competitor is excluded, because
the libraries of the manufacturers differ greatly in scope and con-
tent.

4. The understanding of complex modules without an insight into the

source code is often very difficult. Therefore the programs are ineffi-
cient and error prone.

OSCAT will create with the open OSCAT Library a powerful and compre-
hensive standard for the programming of PLC, which is available in the
Source Code and verified and tested by a variety of applications in detail.
Extensive knowledge and suggestions will continue to flow through a va-
riety of applications to the library. Thus, the library can be described as
very practical. OSCAT understands his library as a development template
and not as a mature product. The user is solely responsible for the tests
in its application modules with the appropriate procedures and to verify
the necessary accuracy, quality and functionality. At this point we refe-
rence to the license and the disclaimer mentioned in this documentation.

Version 1.21

Chapter 2.

Introduction

2.2. Conventions

1. Direct modification in memory:

Functions, which modify input values with pointer like Array_Sort,
starts with an underscore " ". Array_Sort sorts an array directly in
memory, which has the significant advantage that a very large array
may not be passed to the function and therefore memory of the size
of the array and the time is saved for copying. However, it is only re-
commended for experienced users to use these functions, as a mi-
suse may lead to serious errors and crashes! In the application of
functions that begin with " ", special care is appropriate and in parti-
cular to ensure that the call parameters never accept undefined va-
lues.

. Naming of functions:

Function modules with timing manner, such as the function PT1 are
described by naming FT_<modulname> (ie. FT_PT1). Functions wi-
thout a time reference are indicated with F_<modulename>.

. Logical equations:

Within this guide, the logical links are used & for AND , + for OR, /A
for negated A and # for a XOR (exclusive OR).

. Setup values for modules: o oaram eter bearbeiten]
To achieve that the application and -
programming remains clear and S CESTET —
that complex functions can be re- CLICK EN
presented simply, many of the mo- MAXRUNTIME &=
dules of the library OSCAT have ad- DEBOUNCE_TIHE
. DBL_CLKA1
justable parameters that can be DBL_POS1
edited in application by dou- DBL el K2
ble-clicking on the graph'ic symbol DL ANG2
of the module. Double-clicking on D1_TOGGLE
the icon opens a dialog box that al- MASTER_HODE
lows you to edit the Setup values. If | M

a function is used multiple times,
so the setup values are set indivi-
dually for each module. The processing by double-clicking works on
CoDeSys exclusively in CFC. In ST, all parameters, including the se-
tup parameters may passed in the function call. The setup parame-
ters are simply added to the normal inputs. The parameters are in
the graphical interface entered by double click and then processed
as constants under IEC61131. It should be noted that time values
has to be written with syntax "T#200ms" and TRUE and FALSE in ca-
pital letters.

. Error and status Reporting (ESR):

More complex components are largely contributed a Error or status
output. A Error Output is 0 if no error occurs during the execution. If,

10

Version 1.21

Chapter 2.

Introduction

however, in a module a error occurs, this output takes a value in the
range 1 ..99 and reports a error with a error number. A status or Er-
ror Collection module may collect these messages and time-stam-
ped, store them in a database or array, or by TCP/IP forward it to
higher level systems. An output of the type Status is compatible
with a Error starting with identical function. However, a status out-
put reports not only errors but also leads on activities of the module
log. Values between 1..99 are still error messages. Between
100..199 are located the reports of state changes. The range from
200..255 is reserved for Debug Messages. With this, within the libra-
ry OSCAT standard functionality, a simple and comprehensive option
is offered to integrate operational messages and error messages in
a simple manner, without affecting the function of a system. Modu-
les that support this procedure, as of revision 1.4 are marked "ESR-
ready." For more information on ESR modules, see the section
"Other functions".

2.3. Test environment and conditions

Available platforms and related dependencies

CoDeSys:

Needs the libraries " SysLibFile.lib " and " SysLibSockets.lib "
Runs on

WAGO 750-841

CoDeSys SP PLCWInNT V2.4

and compatible platforms

PCWORX:
No additional library needed

Runs on all PLC iwith file system and Ethernet controllers with firmware >=

3.5x

BECKHOFF:

Development Environment Target PLC libraries to include

Platform

11

Version 1.21

Chapter 2. Introduction

TwinCAT v2.8.0 or higher PC or CX TcSystem.Lib
(x86) TcBase.Lib
TcSystem.Lib

TwinCAT v2.10.0 Build >= 1301 or CX (ARM) TcSystem.Lib
higher TcBase.Lib
TcSystem.Lib

Requires the installation of "TwinCAT TCP / IP Connection Server"
Thus needs the library "Tcplp.Lib "
(Standard.lib; TcBase.Lib; TcSystem.Lib is automatically included)

Programming environment:
NT4, W2K, XP, Xpe;
TwinCAT system version 2.8 or higher;
TwinCAT Installation Level: TwinCAT PLC or higher;
Target platform:
TwinCAT PLC runtime system version 2.8 or higher.
PC or CX (x86)

TwinCAT TCP/IP Connection Server v1.0.0.0 or higher;
NT4, W2K, XP, XPe, CE (image v1.75 or higher);
CX (ARM)

TwinCAT TCP/IP Connection Server v1.0.0.44 or higher;
CE (image V2.13 or later);

2.4. Releases

This manual is updated by OSCAT continuously. It is recommended to dow-
nload the latest version of the OSCAT manual under www.OSCAT.DE . Here
the most current Manual is available for download. In addition to the Ma-
nual OSCAT prepared a detailed revision history. The OSCAT revisionhistory
lists all revisions of individual modules, with amendments and at what re-
lease the library of this component is included.

12

Version 1.21

http://www.oscat.de/

Chapter 2. Introduction

2.5. Support

Support is given by the users in the forum
WWW.OSCAT.DE. A claim for support does not exists, even if the library or
parts of the library are faulty. The support in the forum under the OSCAT is
provided for users voluntarily and with each other. Updates to the library
and documentation are usually made available once a month on the home
page of OSCAT under WWW.OSCAT.DE. A claim for maintenance, troubles-
hooting and software maintenance of any kind is generally not existing
from OSCAT. Please do not send support requests by email to OSCAT. Re-
quests can be processed faster and more effectively when the inquiries
are made in our forum.

13 Version 1.21

http://www.oscat.de/
http://www.oscat.de/

Chapter 3. Demo-Programs

3. Demo-Programs

3.1. Demo programs

The OSCAT Network Library contains components and functions that deal
with the issue of file-handling and ethernet communications, and someti-
mes require enhanced base knowledge . In order to allow the user easy
access are possible, for many theme demo programs are prepared.

The demo programs are in network.lib in the folder "DEMO" included. If
they are used, the needed programs should be copied to your project and
then can be adjusted to your needs. Some modules require the disclosure
of its own specific parameters so that they are fully functional.

The Codesys and Beckhoff library demo programs are hidden because
they would otherwise occupy resources needlessly.

BASE64 DEMO
CSV_PARSER BUF _DEMO
CSV_PARSER_FILE_DEMO
DLOG_FILE_CSV
DLOG_FILE_CSV_FTP_DEMO
DLOG_FILE_CSV_SMTP_DEMO
DLOG_FILE_HTML_DEMO
DLOG_FILE_XML_DEMO
DLOG_RRD_DEMO
DNS_DYN_DEMO
DNS_REV_DEMO
DNS_SNTP_SYSLOG_DEMO
FILE_BLOCK_DEMO
FTP_CLIENT DEMO
GET_WAN_IP_DEMO
HTTP_DEMO
INI_PARSER_BUF_DEMO
INI_PARSER_FILE_DEMO
IP2GEO_DEMO
IRTRANS_DEMO

14

Version 1.21

Chapter 3.

Demo-Programs

MB_CLIENT DEMO
MB_SERVER_DEMO
MD5_CRAM_AUTH_DEMO
NET VAR_MASTER_DEMO
NET VAR_SLAVE_DEMO
RC4_CRYPT DEMO
SHA MD5_DEMO
SMTP_CLIENT _DEMO
SPIDER_DEMO
TELNET_LOG_DEMO
TELNET_PRINT_DEMO
TN_VISION_DEMO 1
TN_VISION_DEMO 2
YAHOO WEATHER_DEMO
WORLD WEATHER_DEMO

15

Version 1.21

Chapter 4. Data Types of the NETWORK-Library

4. Data Types of the NETWORK-Library

4.1. DLOG_DATA

The Structure DLOG_DATA is used for communication of the DLOG_ * mo-

dules.

DLOG_DATA:

Data field Data Type Description

STORE_TYPE BYTE Typ of DLOG_STORE module
ADD HEADER BOOL Header data store
ADD_DATA BOOL Cyclic data store

ADD_DATA REQ BOOL Store data from external
CLOCK_TRIG BOOL DTI (Date-Time) New value
ID_MAX USINT Number of blocks DLOG_* modules
DTI DT current Date-Time Value

ucB UNI_CIRCULAR_BUFFER_DATA |Data Storage
NEW_FILE_STRING |STRING New file name
NEW_FILE_RTRIG BOOL Edge new file was created

4.2. us_LOG_VIEWPORT

us_LOG_VIEWPORT

Name Type Properties

LINE_ARRAY ARRAY [1..40] OF INT LOGe-index references

COUNT INT Number of visible messages
UPDATE_COUNT UINT Update count

MOVE_TO_X INT Control of the message display
UPDATE BOOL Data has been changed -> redraw

16 Version 1.21

Chapter 4.

Data Types of the NETWORK-Library

4.3. URL

The Structure URL stores the individual parts of a URL.
URL:

Data field Data Type Description
PROTOCOL STRING (10) Protocol
USER STRING(32) User Name
PASSWORD STRING(32) Passwort
DOMAIN STRING(80) Domain
PORT WORD Port Nummer
PATH STRING(80) Pfadangabe
QUERY STRING(120) Query
ANCHOR STRING (40) Anker
HEADER STRING(160) Header

4.4. us_ TN_INPUT CONTROL

A variable of type us TN _INPUT CONTROL can be used to parameterize
and manage various INPUT_CONTROL elements, and as well as to repre-
sent the ToolTip information.

us_TN_INPUT _CONTROL:
Data field

Data Type Description

bo Enable BOOL Processing enable / disable

bo_Update_all BOOL All elements redraw

bo Reset Fokus |BOOL set Focus on first Element

in_Fokus_at INT Element with an active focus

in_Count INT Number of INPUT_CONTROL elements

17

Version 1.21

Chapter 4. Data Types of the NETWORK-Library

in_ToolTip_X INT ToolTip Text X Offset
in_ToolTip_Y INT ToolTip Text Y Offset

by ToolTip Attr |BYTE ToolTip text attributes (color)
in_ToolTip_Size INT ToolTip text length

usa_TN_INPUT C |ARRAY [1..20] OF
ONTROL_DATA |5 TN_INPUT CONTROL_DATA

4.5. us_ TN_INPUT CONTROL_DATA

A variable of type us TN _INPUT_CONTROL DATA can use to parameterize a
INPUT_CONTROL element and to process element related inputs / events.

us_TN_INPUT_CONTROL_DATA:

Data field Data Type Description

by Input_Exten_Code BYTE Extended Key Code

by Input_ASCIl_Code |BYTE Key Code ASCII
bo_Input_ASCII_IsNum |BOOL Key code is a digit

in_Title_X_Offset INT Title Text X Offset

in_Title_Y_Offset INT Title Text Y Offset

by Title_Attr BYTE Title text attributes

st_Title_String STRING st_Title_String

in_Cursor_X INT current cursor X position
in_Cursor_Y INT current cursor Y position

IN_TYPE INT Element Type

in_X INT Element X position

in Y INT Element Y position

in_Cursor_Pos INT current cursor position

by Attr mF BYTE Attributes for element with focus
by Attr_oF BYTE Attributes for element without focus

18 Version 1.21

Chapter 4. Data Types of the NETWORK-Library

in_selected INT Text element is selected

st Input_Mask STRING Input mask

st Input_Data STRING(STRING_LENGTH) | Text input current

st Input_String STRING text copy after entering

st Input_ToolTip STRING Text for ToolTip
in_Input_Option INT Text Options
bo_Input_Entered BOOL Text RETURN key pass
bo_Input_Hidden BOOL Text hidden input with "*'
bo_Input_Only Num BOOL Text only allow number entry
bo Focus BOOL Element has focus
bo_Update_Input BOOL Element due to input redraw
bo_Update_ All BOOL Element draw from scratch

4.6. us_ TN_MENU

A variable of type us_TN_MENU can be used to parameterize a MENU item,
to display it and to process element related inputs.

us_ TN_MENU:

Data field Data Type Description

st Menu_Text STRING(STRING_LENGTH) Menu items
in_Menu_E_Count INT Number of menu items
in_Y INT Menu Y position

in_X INT Menu X position

by Attr mF BYTE Text attributes with focus

by Attr oF BYTE Text attributes without focus
in_X_SM_new INT Sub-menu, new X-position
in_Y_SM_new INT Sub-menu, new Y-position
in_X_SM_old INT Sub-menu old X-Position

19 Version 1.21

Chapter 4. Data Types of the NETWORK-Library

in_Y_SM_old INT Sub-menu old Y position
in_Cur_Menu_ltem INT current main menu item
in_Cur_Sub_ltem INT current sub-menu item
in_State INT menu status
in_Menu_Selected INT selected menu item
Menu, number of lines |BOOL action: create menu
bo_Destroy BOOL action: remove menu
bo Update BOOL action: refresh menu

4.7. us_ TN_MENU_POPUP

A variable of type us TN_MENU _POPUP can be used to parameterize a PO-
PUP item, to display it and to process element related inputs.

us_TN_MENU_POPUP:

Data field Data Type Description

st Menu_Text STRING(STRING_LENGTH) |Menu items
in_Menu_E_Count INT Number of menu items

in_X INT Menu X position

in_ Y INT Menu Y position

in_Cols INT INT

INT INT Menu, number of lines
in_Cur_Item INT Current menu item
by_Attr_mF BYTE Text attributes with focus
by_Attr_oF BYTE Text attributes without focus
by Input_Exten_Code BYTE keycode - special keys
Menu, number of lines |BOOL action: create menu

bo Destroy BOOL action: remove menu
bo_Update BOOL action: refresh menu

20 Version 1.21

Chapter 4.

Data Types of the NETWORK-Library

bo Activ

BOOL

Menu is active

4.8. us_TN_SCREEN

A variable of type us TN _SCREEN can be used to manage display the gra-
phical user interface (GUI).

us_TN_SCREEN:

Data field Data Type Description

bya CHAR ARRAY [0..1919] OF BYTE Screen character
bya COLOR ARRAY [0..1919] OF BYTE screen color codes

bya BACKUP ARRAY [0..1919] OF BYTE screen backup memory

bya_Line_Update

ARRAY [0..23] OF BYTE

screen lines update

by Input_Exten_Code BYTE Key code special keys
by_Input_ASCII_Code BYTE Key Code ASCII
bo_Input_ASCII_IsNum BOOL Key code is a digit
in_Page_Number INT current page number
in_Cursor_X INT Cursor X Position
in_Cursor_ Y INT Cursor Y Position
in_EOS_Offset INT End of String Offset
by Clear Screen Attr |BYTE screen delete color
bo Clear _Screen Attr |BOOL delete screen
bo_Modul_Dialog BOOL modal dialog active
bo Menu_Bar Dialog BOOL Menu dialog active

21

Version 1.21

Chapter 4. Data Types of the NETWORK-Library

4.9. FILE_PATH_DATA

The Structure FILE_PATH_DATA is used by the the module FILE_PATH_SPLIT
to store each item.

FILE_PATH_DATA:
Data field Data Type Description

DRIVE STRING (3) Drive Name

DIRECTORY STRING(STRING_LENGTH) | Directory Name

FILE NAME STRING File Name

4.10. FILE_ SERVER DATA

FILE_SERVER data structure:

Name Type Properties
File_open BOOL File is open
FILE NAME STRING File Name
MODE BYTE Mode - command
OFFSET UDINT File offset for reading and writing
FILE_SIZE UDINT Current size of the file in bytes
AUTO_CLOSE TIME Timing for the automatic closure
ERROR BYTE Error codes (system dependent)

4.11. IP2GEO

IP2GEOQO data structure:

Name Type Properties
STATE BOOL Data is valid
Data is valid DWORD IP address of the geographical data

22 Version 1.21

Chapter 4.

Data Types of the NETWORK-Library

COUNTRY_CODE STRING(2) Country code (ISO format) eg AT = Austria
COUNTY_NAME STRING(20) |Name of the country

REGION_CODE STRING(2) Region Code (FIPS format) eg 09 = Vienna
REGION_NAME STRING(20) |Name of region

CITY STRING(20) |Name of the city

GEO_LATITUDE REAL Latitude of the place

GEO_LONGITUDE REAL Longitude of the place
TIME_ZONE_NAME STRING(20) | Time zone name

GMT_OFFSET INT Offset from Universal Time in minutes

IS DST BOOL DST active
4.12. IP_C
IP_C data structure:

Data field Data Type Description

C_MODE BYTE Type of connection

C_PORT WORD Port Number

CIP DWORD coded IP v4 address

C_STATE BYTE Status of the connection

C_ENABLE BOOL Connection release

R _OBSERVE |BOOL Receive data monitor

TIME_RESET |BOOL Reset the monitoring times

ERROR DWORD Error Code

FIFO IP_FIFO_DATA Data structure of the access management

(No user access required)
MAILBOX ARRAY [1..16] OF BYTE |Mailbox: data area for module data exchange

23

Version 1.21

Chapter 4.

Data Types of the NETWORK-Library

4.13. IP_FIFO_DATA

IP_FIFO_DATA data structure:

Data field Data Type Description

X ARRAY [1..128] OF BYTE |FIFO memory with registered ID's

Y ARRAY [1..128] OF BYTE |Number of entries per ID's

ID BYTE Last assigned ID (highest ID)
MAX_ID BYTE Maximum number of applications per ID
INIT BOOL Initialization performed

EMPTY BOOL FIFO is empty

FULL BOOL FIFO is full (should not happen!)
TOP INT Maximum number of entries in FIFO
NW INT write-index FIFO

NR INT read-index FIFO
4.14. LOG_CONTROL
us_LOG_VIEWPORT data structure:

Name Type Properties

NEW_MSG STRING(STRING_LENGTH) |New Message - Text

NEW_MSG_OPTION |DWORD New message - Option
BYTE 3: Reserve
BYTE 2: Level
BYTE 1: Backcolor
BYTE 0: Frontcolor
LEVEL BYTE Given log level
SIZE INT Size of the array (maximum index)
RESET BOOL Reset / delete the entries
PRINTF ARRAY[1.11] OF Parameter data for PRINT_SF block
STRING(STRING_LENGTH)
MSG ARRAY[0.N] OF Array for message - text

24

Version 1.21

Chapter 4. Data Types of the NETWORK-Library
STRING(STRING_LENGTH)
MSG_OPTION ARRAY[0.N] OF DWORD Array ofor messages - Option

BYTE 3: Reserve
BYTE 2: Level
BYTE 1: Back Color
BYTE 0: Color front

UPDATE_COUNT UINT

Update-counter (increased with each new
message)

IDX

INT

Current Issue Index

RING_MODE

BOOL

BUFFER enabled overflow / Ringmode enab-
led

4.15. NET_VAR DATA

NET_VAR data structure:

Name Type Properties

CYCLE UDINT Cycle Counter

STATE BYTE Operating condition

INDEX INT Read / write index

ID_MAX USINT Number of satellite components
Error_id BYTE ID number of the faulty module
BUF_SIZE UINT Size of the buffer (bytes)

S_BUF NETWORK_BUFFER Network buffer for sending data
R_BUF NETWORK_BUFFER Network buffers for receiving data

4.16. PRINTF_DATA

PRINTF _DATA data structure:

Data field

Data Type

Description

25

Version 1.21

Chapter 4.

Data Types of the NETWORK-Library

‘ PRINTF ‘ARRAY [1..11] OF STRING(LOG_SIZE) |Array for passing parameters

4.17. UNI_CIRCULAR_BUFFER_DATA

The Structure UNI_CIRCULAR _BUFFER_DATA is used for data management

for the module UNI_CIRCULAR_BUFFER
UNI_CIRCULAR_BUFFER_DATA:

Data field Data Type Description

D MODE INT MODE (command number)
D HEAD WORD Header information Read / Write
D_STRING STRING(STRING_LENGTH) STRING Read / Write

D REAL REAL REAL Read / Write

D_DWORD DWORD DWORD Read / Write
BUF_SIZE UINT Number of bytes in the buffer
BUF_COUNT UINT Number of elements in the buffer
BUF_USED USINT Level (0-100%)

BUF NW_BUF_LONG Data BUFFER

_GetStart UINT Internal: read pointer
_GetEnd UINT Internal: read pointer

_Last UINT Intern: Data pointer

_First UINT Intern: Data pointer

4.18. VMAP_DATA

VMAP_DATA data structure:

Name Type Properties

FC DWORD function code: release bit mask

26 Version 1.21

Chapter 4. Data Types of the NETWORK-Library

V_ADR INT Virtual Address Range: Start address
V_SIZE INT Virtual address space: number of WORD
P_ADR INT Real address space: Start address
TIME_OUT TIME Watchdog

4.19. XML_CONTROL

XML_CONTROL data structure:

Data field Data Type Description
COMMAND WORD Control commands (binary occupancy)
START_POS UINT (Buffer index of first character)
STOP_POS UINT (Buffer-index of the last characters)
COUNT UINT Element number
TYPE INT Type code of the current element
LEVEL UINT Current hierarchy / level
PATH STRING(STRING_LENGTH) Hierarchy as TEXT (PATH)
ELEMENT STRING(STRING_LENGTH) current item as TEXT
ATTRIBUTE STRING(STRING_LENGTH) Current attributes as TEXT
VALUE STRING(STRING_LENGTH) Current value as TEXT
BLOCK1_START UINT Start position of block 1
BLOCK1_STOP UINT Stop position of Unit 1
BLOCK2_START UINT Start position of block 2
BLOCK2_STOP UINT Stop position of Unit 2

27 Version 1.21

Chapter 4.

Data Types of the NETWORK-Library

4.20. WORLD WEATHER DATA

WORLD_WEATHER _DATA data structure:

Name |Type Properties
CUR WORLD_WEATHER_CUR Current weather conditions
DAY ARRAY [0..4] OF WORLD_WEATHER_DAY Next 5 days of weather forecast

WORLD_WEATHER_CUR data structure:

Name Type Properties
OBSERVATION_TIME STRING(8) Observation time (UTC)
TEMP_C INT Temperature (°C)
WEATHER_CODE INT Unique Weather Code
WEATHER_DESC STRING(60) | Weather description text
WEATHER_ICON INT Weather Icon
WIND_SPEED_MILES INT Wind speed in miles per hour
WIND_SPEED KMPH INT Wind speed in kilometre per hour
WIND_DIR_DEGREE INT Wind direction in degree
WIND_DIR16POINT STRING (3) |16-Point wind direction compass
PRECIPMM REAL Precipitation amount in millimetre
HUMIDITY INT Humidity (%)

VISIBILITY INT Visibility (km)

PRESSURE INT Atmospheric pressure in milibars
CLOUDOVER INT Cloud cover (%)

WORLD_WEATHER_DAY data structure:

Name

Type

Properties

DATE_OF_DAY

STRING (10)

Date for which the weather is forecasted

28

Version 1.21

Chapter 4. Data Types of the NETWORK-Library
TEMP_MAX _C INT Day temperature in °C(Celcius)
TEMP_MAX_F INT Day temperature in °F(Fahrenheit)
TEMP_MIN_C INT Night temperature in °C(Celcius)
TEMP_MIN_F INT Night temperature in °F(Fahrenheit)
WIND_SPEED_MILES INT Wind Speed in mph (miles per hour)
WIND_SPEED_KMPH INT Wind Speed in kmph (Kilometer per hour)
WIND_DIR_DEGREE INT Wind direction in degree
WIND_DIR16POINT STRING (3) |16-Point wind direction compass
WEATHER_CODE INT A unique weather condition code
WEATHER_DESC STRING(60) |Weather description text
WEATHER_ICON INT Weather Icon
PRECIPMM REAL Precipitation Amount (millimetre)

4.21. YAHOO WEATHER DATA

YAHOO_WEATHER data structure:

Name Type Properties

TimeToLive INT Time to Live: how long in minutes this feed should be
cached

location_city STRING The location of this forecast: city: city name

(40)

location_region STRING(20) | The location of this forecast: region: state, territory, or
region, if given

location_country STRING(20) | The location of this forecast: country:

unit_temperature STRING (1) |temperature: degree units, for f ¢ for Celsius Fahrenheit
or

29

Version 1.21

Chapter 4.

Data Types of the NETWORK-Library
unit_distance STRING(2) |distance: distance units for M| for miles or km for kilo-
meters
unit_pressure STRING(2) |pressure: barometric pressure units of, for in pounds
per square inch or mb for milli bars
unit_speed STRING (3) |speed: units of speed, mph for miles per hour or kilome-
ters per hour for kph
wind_chill INT Forecast information about wind chill in degrees
wind_direction INT Forecast information about wind direction in degrees
wind_speed REAL Forecast information about wind speed, in the units
(mph or kph)
atmosphere_humidity INT Forecast information about current atmospheric humid-
ity: humidity, in percent
atmosphere_pressure INT Forecast information about current atmospheric pres-
sure: barometric pressure, in the units (in or mb)
atmosphere_visibility REAL Forecast information about current atmospheric visibil-
ity, in the units (mi or km)
atmosphere_rising INT Forecast Information about rising: state of the baromet-
ric pressure: Steady (0), rising (1), or falling (2). (Inte-
ger: 0,1, 2)
astronomy_sunrise STRING sunrise: today's sunrise time. The time is a string in a lo-
(10) cal time format of "h: mm am / pm"
astronomy_sunset STRING sunset: today's sunset time. The time is a string in a loc
(10) al time format of "h: mm am / pm"
geo_latitude REAL The latitude of the location
geo_longitude REAL The longitude of the location
cur_conditions_temp INT cur_conditions_text
cur_conditions_text STRING The current weather conditions: text: a textual descrip-
(40) tion of conditions
cur_conditions_code INT The current weather conditions: code: the code for this
condition forecast
cur_conditions_icon INT The current weather conditions: icon: the condition icon
for this forecast
forcast_today_low_temp INT The weather conditions today forcast: the forecasted
low temperature for this day in the units (f or c)
forcast_today_high_temp INT The forcast today weather conditions: the forecasted
high temperature for this in the day units (f or c)
forcast_today_text STRING The forcast today weather conditions: text: a textual de-

30

Version 1.21

Chapter 4.

Data Types of the NETWORK-Library
(40) scription of conditions
forcast_today code INT The current weather conditions: code: the code for this
condition forecast
forcast_today_icon INT The current weather conditions: icon: the icon condition
for this forecast
forcast_tomorrow_low_temp |INT The forcast tomorrow weather conditions: the fore-

casted low temperature for this day in the units (f or c)

forcast_tomorrow_high_temp |INT

The forcast tomorrow weather conditions: the fore-
casted high temperature for this day in the units (f or c)

forcast_tomorrow_text STRING The forcast tomorrow weather conditions: text: a textual
(40) description of conditions
forcast_tomorrow_code INT The current weather conditions: code: the code for this
condition forecast
forcast_tomorrow_icon INT The current weather conditions: icon: the icon condition

for this forecast

Condition Codes:

The fields cur_conditions_code, forcast _today code and
forcast_tomorrow_code describe the weather in text form by " Condition

Codes "

Value |Description

0 tornado

1 tropical storm

2 hurricane

3 severe thunderstorms
4 Temp

5 mixed rain and snow
6 mixed rain and sleet
7 mixed snow and sleet
8 freezing drizzle

9 drizzle

10 freezing rain

31

Version 1.21

Chapter 4.

Data Types of the NETWORK-Library

11 showers

12 showers

13 Snow Flurries

14 Light snow showers
15 blowing snow

16 snow

17 hail

18 sleet

19 20

20 foggy

21 haze

22 smoky

23 blustery

24 windy

25 cold

26 cloudy

27 mostly cloudy (night)
28 mostly cloudy (day)
29 partly cloudy (night)
30 partly cloudy (day)
31 clear (night)

32 sunny

33 fair (night)

34 fair (day)

35 mixed rain and hail
36 hot

37 isolated thunderstorms
38 scattered thunderstorms

32

Version 1.21

Chapter 4. Data Types of the NETWORK-Library
39 scattered thunderstorms
40 scattered showers
41 heavy snow
42 scattered snow showers
43 heavy snow
44 mostly cloudy
45 46
46 snow showers
47 isolated thundershowers
3200 not available

33

Version 1.21

Chapter 5. Other Functions

5. Other Functions

5.1. ELEMENT _COUNT

Type Function: INT
Input SEP: BYTE (separation character of the elements)
1/0 ELEMENT: STRING(ELEMENT LENGTH) (input list)

Output INT (number of items in the list)

ELEMEMNT_COUNT
—SEF ELEMEMNT_COUNT—
ELEMENT F ELEMENT

ELEMENT_COUNT determines the number of items in a list.

If the parameter ELEMENT is an empty string 0 is passed as result. If at
least one character is in ELEMENT it is evaluated as a single element and
ELEMENT_COUNT = 1 is passed to output.

Examples:
ELEMENT_COUNT('0,1,2,3"',44) = 4

ELEMENT_COUNT(",44) =0
ELEMENT_COUNT('x',44) =1

5.2. ELEMENT _GET

Type Function: STRING(ELEMENT LENGTH)

Input SEP: BYTE (separation character of the elements)
POS: INT (of the item)

1/ O ELEMENT: STRING(ELEMENT _LENGTH) (input list)

Output STRING (String output)

34

Version 1.21

Chapter 5. Other Functions

ELEMEMNT_GET
—SEF ELEMEMNT_GET|—
—POS F ELEMEMNT
—ELEMEMNT &

ELEMENT_GET passes the item at the position POS from a list. The list con-
sists of strings which are separated by the separation character SEP. The
first element of the list has the position 0

Examples:

ELEMENT _GET('ABC,23, NEXT', 44, 0) = 'ABC'
ELEMENT GET('ABC,23, NEXT', 44, 1) = '23'
ELEMENT GET('ABC,23, NEXT', 44, 2) ="
ELEMENT _GET('ABC,23, NEXT', 44, 3) = 'NEXT'
ELEMENT GET('ABC,23, NEXT', 44, 4) ="
ELEMENT GET(", 44, 0) ="

5.3. NETWORK_VERSION

Type Function: DWORD
Input IN : BOOL (if TRUE the module provides the release date)
Output (Version of the library)

METWORK_VERSION
M MNETWORK_VERSION—

NETWORK _VERSION provides if IN = FALSE the current version number as
DWORD. If IN is set to TRUE then the release date of the current version as
a DWORD is returned.

Example: NETWORK VERSION(FALSE) = 111 for version 1.11
DWORD_TO DATE(NETWORK VERSION(TRUE)) = 2011-2-3

35

Version 1.21

Chapter 6. Device Driver

6. Device Driver

6.1. IRTRANS

The module IRTRANS ? provide an interface for infrared Transmitter Com-
pany IRTrans GmbH. IRTrans offers transmitter for RS232 and TCP/IP, all of
which can be operated with the following driver components. The basic
connection to RS232 or TCP/IP must be made with the appropriate manu-
facturer routines. The interface modules rely on a Buffer Interface to which
provides in a Buffer (Array of Byte) data and in a Counter the length of the
data packet in bytes. The IRTrans devices learn the IR key codes and trans-
late them in ASCII Strings using a configurable database. With the Ether-
net variant, this Strings then sent over UDP and can be received from a
PLC and be evaluated. Thus, for example, the blinds are automatically
shut down when someone turns on the TV without this additional action
would be necessary. The PLC can listen in this manner any number of re-
mote controls in different areas and derive appropriate actions from it.
Conversely, of course, the release of key codes on the Transmitter modu-
les is possible.

6.2. IRTRANS DECODE

Type Function module

1/ O IP_C: data structure 'lP_CONTROL ' (Parameterization)
R_BUF: data structure NETWORK BUFFER_SHORT '
(Receive data)

Output CMD: BOOL (TRUE if valid data are present at the output)
DEV: STRING (name of the remote control)
KEY: STRING (name of the key codes)
ERROR: BOOL (TRUE if a invalid data packet is present)

36

Version 1.21

Chapter 6. Device Driver

227
IRTRANS DECODE
IF C & CHD |-
F_EUF & DEV|—
KET|—
ERROR|—
=P C
= R_BUF

IRTRANS_DECODE receives the data from the module IRTRANS_SERVER
present in BUFFER, checks if a valid data package is available and deco-
des the name of the remote control and the name of the button form the
data packet. If a valid data packet has been decoded, the name of the re-
mote control is passed at the output DEV and the name of the button on
the output KEY. The output CMD signals that the new output data are pre-
sent. The ERROR output is then set when a data packet was received that
is not in the correct format.

The format is defined as follows:
'Name of the remote control’, 'Name of the key code' RN

A data packet consists of the name of the remote control, followed by a
comma and then the name of the key codes. The data packet is a comple-
ted by Carriage Return and a Line Feed .

To ensure that IRTRANS DECODE works in the IRTrans configuration the
Check box BROADCAST IR RELAY must be checked and in the correspon-
ding Device database under the DEFAULT ACTION the String '%r%c\r\n'
must be registered. IRTRANS DECODE evaluates just this String and deco-
des %r as the name and %c as pressed a button of the remote control.

6.3. IRTRANS RCV 1

Type Function module
Input CMD : BOOL (TRUE if data for evaluating are available)
/0O DEV: STRING (name of the remote control)

KEY: string (name of button)

Setup DEV_CODE: STRING (to be decoded remote control name)
KEY_CODE: STRING (key code to be decoded)

Output Q: BOOL (output)

IRTRANS_RCV_1 checkes when CMD = TRUE if the string matches the input
DEV corresponds to DEV_CODE (device code) and the string at the input

37

Version 1.21

Chapter 6. Device Driver

222

IRTRANS RCV 1
—{CMD o
—{DEV = DEV
—KEY * = KEY

KEY corresponds to the KEY_CODE. If the codes match and CMD = TRUE,
then the output Q for a cycle is set to TRUE.

The following example shows the application of IRTRANS_RCV_1:

DRIVER,_1
IRTRANS DECODE IRTRANS FCY 4 1 DRIVER_1
IRTRANS DECODE IRTRANS RCV 1 —sET Q
IF C IF Cw D CHD Q IN
F_EUF E_ETF & DEV DEV & BDEV| —RST
KEY KEY & B KEY
EFROR|—
b IP O
> B_BUF

In this example, the receive data buffer to IRTRANS DECODE is passed.
The decoder determines from the valid data packets String DEV and KEY
and passes them with CMD to IRTRANS RCV 1.
IRTRANS RCV 1 or alternatively IRTRANS RCV_4 and IRTRANS RCV_ checks
whether DEV and KEY match and then switches the output Q for a cycle to
TRUE. in the example a DRIVER_1 is controlled which enables the remote
control to switch the output with each received log.

If multiple Key Codes are to be evaluated alternatively the modules IR-
TRANS_RCV_4 or IRTRANS_RCV_8 can be used or more of these modules
can be used in parallel mode.

IRTRANS DECODE IRTRANS ROV 4 1
IRTRANS DECODE IRTRANS RCV 4

Ir C IP C = CMD CHMD o
F_EUF F_EIF & DEV DEV = Q1
EEY KEY & nz—
ERROR— 03—

= IF C = DEV

= _EUF » KEY

IRTRANS RCV 4 2
IRTRANS RCV 4

CHD Qo
DEV F Nl
FET F Q2
Q3

F DEV

FEEY

38

Version 1.21

Chapter 6. Device Driver

6.4. IRTRANS RCV 4

Type Function module
Input CMD: BOOL (TRUE if data for evaluating are available)
/0O DEV: STRING (name of the remote control)
KEY: string (name of button)
Setup DEV_CODE: STRING (to be decoded remote control name)

KEY _CODE_0..3: STRING (key code to be decoded)
Output Q0..Q3: BOOL (output)

Ry

IRTRANS RCV_4
-]
—DEV & Q1
EY I+ nz—
03—
> DEV
P KEY

IRTRANS_RCV_4 checkes when CMD = TRUE if the string matches the input
DEV corresponds to DEV_CODE (device code) and the string at the input
KEY corresponds to the KEY_CODE. If the codes match and CMD = TRUE,
then the output Q for a cycle is set to TRUE. For more information about
the function of the device are under IRTRANS RCV 1.

6.5. IRTRANS RCV 8

Type Function module
Input CMD : BOOL (TRUE if data for evaluating are available)
/O DEV: STRING (name of the remote control)
KEY: string (name of button)
Setup DEV_CODE: STRING (to be decoded remote control name)

KEY_CODE_0..7: STRING (key code to be decoded)
Output Q0..Q7: BOOL (output)

IRTRANS RCV_8 checkes when CMD = TRUE if the string matches the input
DEV corresponds to DEV_CODE (device code) and the string at the input
KEY corresponds to the KEY_CODE. If the codes match and CMD = TRUE,

39

Version 1.21

Chapter 6. Device Driver

Ry

IRTHANS_RCV_8
—{crm Qo
—{EV = Q1
—{EEY = Q2
Q3
Q4
Qs
U6
07—
& DEV
b KEY

6% .." ERTRANSC'SERVER set to TRUE. For more information about
the function of the d@vice are under IRTRANS_RCV_1.

Type Function module
Input UDP_TCP : BOOL (FALSE = UDP / TRUE = TCP)
In_Out IP_C: data structure 'lP_CONTROL ' (Parameterization)

S_BUF: data structure 'NETWORK_BUFFER_SHORT'
(Transmit data)
R_BUF: data structure NETWORK_BUFFER_SHORT
(Receive data)

Output S _ENABLE: BOOL (release IRTRANS data send)
R_ENABLE: BOOL (IRTRANS data receive enabled)
ERROR: DWORD (Error code: Check IP_CONTROL)

prz

IRTRANS SERVER
—UDP_TCF & ENAELE
—Ir C & F_ENAELE|—
—% BUF & ERROR|—
—F_EUF & = IF C

¥ & BUF

> B_BUF

IRTRANS SERVER can be used as both a receiver and a transmitter of IR-
TRANS commands. Is UDP_TCP = TRUE is a passive TCP connection, other-
wise set up a passive UDP connection. The type of operation must also be
configured with IRTRANS device. Once a data connection is available and
sending commands is allowed, S ENABLE = TRUE. In UDP mode, after the
initial data received from IRTRANS, data can be sent, since in the passive
mode, the UDP-IP parameter is initially not known. The receiving mode is
indicated with R_ENABLE. If data are received they are available in R_BUF
for further processing for other modules. Send data has to be entered by
the modules in the S BUF, so they are then sent automatically from IR-

40

Version 1.21

Chapter 6. Device Driver

TRANS_SERVER. If transmission errors occurs, they are issued with "ER-
ROR" (see module IP_CONTROL2). Existing errors are acknowledged auto-
matically every 5 seconds by the module.

UDP server mode:

In the IRTRANS Web configuration, the IP address of the PLC is entered as
a broadcast address.

IRTRANS Web Configuration:

¥ Broadcast IR Relay

UDP Broadcast Targat 152 168124.1
UDP Broadcast Port

Sicre SaSngs

The following example shows the application of IRTRANS Devices

41 Version 1.21

Chapter 6.

Device Driver

S
AR Fraedanm
FAN o CimpTandg

P C F_Ce
F_BUF —R_BUF =

DEMNERE_4

IRTRANS_DECODE) IFTRANS_RCY_4 o DRIVER_4
IRTRANS_DECODE 5 IRTRANS_RCY_4 —BET oli
CMD CMD uli IND al
DEY DEW & i N1 Q2
KEY KEY & Q2 N2 Q3
ERROR a3 IN3
> IP_C &> DEV —RST
» F_BUF > KEY

IRTRAMNS_SHD_8_1

IETRANS_SMHD_§_2

(=3}

RTRANS SND & & 5 IRTRANS_SND_8 10
Send_1.0 {In_0 KEY1— KEY_1L_|J Send_7 0 IN_0 KE™
Send 1.1 —{IN_1 b IP_C Send 2 1 {IN_1 b IP_C
Send_1_72 IM_2 e 5_BUF Send_?_2 IN_2 e 5B
Send 1.3 IN_3 Send 2 3 IN_3
Send_1_4 —IM_4 Send_¢_4 IN_4
Send 1.5 —IMN_5 Send 2 5 —IN_G
Send_1_F —IM_B Send_¢_F —IN_G
Send_1_7 H—IMN_7 Send_2_7 —IN_Y
T#500ms —T_REPEAT T#E00ms —T_REPEAT
P_C P Ce PC P Ce
S _BUF |—S_BUF & S _BUF S _BUF &
IRTRANS_SERVER @ IP_CONTROLZ ;
IRTRANS_SERVER IP_CONTROLZ 9
MODE —UDP_TCP S_ENABLE{S ENABLE 4P b IP_C
P C P Cw Fi_ENABLE R_ENABLE 21000 FHPORT > 5_BUF
5 _BUF —S_BUF & ERROR error_server T#2s —TIME_QUT = F_BLIF|
F_BUF R BUF e v IP_C P_C P Ce
> S5_BUF S_BUF 5 BUF &
> B_BUF F_BUF R BUF e
Type Function module
Input IN: BOOL (TRUE = Send key code)
T _REPEAT: TIME (time to re-send the key code)
1/ 0O IP_C: data structure 'lP_CONTROL ' (Parameterization)
S BUF: data structure 'NETWORK _BUFFER_SHORT'
(Transmit data)
Setup DEV_CODE: STRING (to be decoded remote control name)

42

Version 1.21

Chapter 6. Device Driver

KEY_CODE: STRING (key code to be decoded)
Output KEY: BYTE (output of the currently active key codes)

IRTRANS SND 4 1

IRTEANS_SND_1

1 KET|—
—{T REPEAT B IF C
1P = 8 BUF
—{5_BUF &

IRTRANS SND 1 allows you to send a remote command to the IRTrans. If IN
TRUE the specified device and key code in setup is sent to the IRTrans
which outputs in turn as a real remote control commands. With T_REPEAT
the repeat time for sending can be specified . If IN remains constant to
TRUE so always this key code sent repeated after the time T_REPEAT. At
output KEY in active control "1" is passed. KEY = 0 means that the IN is
not active.

6.8. IRTRANS SND 4

Type Function module
Input IN_0..3 : BOOL (TRUE = Send keycode x)
T_REPEAT: TIME (time to re-send the key code)
1/ O IP_C: data structure 'lP_CONTROL ' (Parameterization)

S_BUF: data structure 'NETWORK_BUFFER_SHORT'
(Transmit data)

Setup DEV_CODE: STRING (to be decoded remote control name)
KEY_CODE_0..3: STRING (key code to be sent)

Output KEY: BYTE (output of the currently active key codes)

43 Version 1.21

Chapter 6. Device Driver

IRTRANS SHND 4 1
IRTRANS SHND 4
—IN 0 FEV|-
—IN 1 B IR
—1n 2z = & EUF

—IN 3

T _REFPEAT
IF C &

5 BUF I

IRTRANS _SND_4 allows users to send remote control commands to the IR-
Trans. If IN_x is TRUE the specified device and key code in setup is sent to
the IRTrans which outputs in turn as a real remote control commands. With
T _REPEAT the repeat time for sending can be specified . If IN_0 remains
constant to TRUE so always this key code sent repeated after the time
T_REPEAT. If a change to a different IN_x occures this code will send imme-
diately and then again delayed with T_REPEAT, if it remains a long period
of time. At output KEY the currently controlled KEY will be displayed. KEY
= 0 means that no IN_x is active. The values 1-3 are the IN_0 - IN_3.

6.9. IRTRANS SND 8

Type Function module
Input IN_0..7 : BOOL (TRUE = Send keycode x)
T_REPEAT: TIME (time to re-send the key code)
1/ O IP_C: data structure 'IlP_CONTROL ' (Parameterization)

S BUF: data structure 'NETWORK _BUFFER_SHORT'
(Transmit data)

Setup DEV_CODE: STRING (to be decoded remote control name)
KEY CODE_0..7: STRING (key code to be sent)

Output KEY: BYTE (output of the currently active key codes)

44 Version 1.21

Chapter 6. Device Driver

IRTRANS SND 5 1
IRTEANS SND &8
—IN_ 0 EEY—
—In_1 B IP C
—In_z B 5 BUF

—IN_3
—IN_4
—IN_s
—IN_&
—In_7
—T_REPEAT
—Ir C &
—s _BUF &

IRTRANS SND_8 allows users to send remote control commands to the IR-
Trans. If IN_x is TRUE the specified device and key code in setup is sent to
the IRTrans which outputs in turn as a real remote control commands. With
T _REPEAT the repeat time for sending can be specified . If IN_0 remains
constant to TRUE so always this key code sent repeated after the time
T_REPEAT. If a change to a different IN_x occures this code will send imme-
diately and then again delayed with T_REPEAT, if it remains a long period
of time. At output KEY the currently controlled KEY will be displayed. KEY
= 0 means that no IN_x is active. The values 1-3 are the IN_0 - IN_7.

45

Version 1.21

Chapter 7. Data Logger

7. Data Logger

7.1. DATA-LOGGER

The data logger modules enable the collection and storage of process data
in real time. After triggering the storage pulse all parameterized process
values are stored in a data buffer, as various storage media are often not
fast enough. Up to 255 process values are processed in one package. The
calling order of the modules determines automatically the ranking of the
process values (take care of data-flow order)

Fore storing the various data types, the following modules are provided.

DLOG_STRING
DLOG_REAL
DLOG_DINT
DLOG DT
DLOG_BOOL

Other data types convert first manually, and transferred as STRING. The
collected data can then be forwarded to a data target.

DLOG_STORE_FILE_CSV store data as csv-file
DLOG_STORE_FILE_HTML store data as HTML-file
DLOG _STORE_FILE_ XML store data as XML-file
DLOG _STORE_RRD store data on RRD-server

The files that are stored on the controller can then be forwarded to exter-
nal data targets.

DLOG_FILE_TO_SMTP (File as Email)
DLOG_FILE_TO_FTP (copy file to an external FTP server)

46

Version 1.21

Chapter 7. Data Logger

The modules above can be combined with each other.

The following example shows the recording of a time stamp, a REAL and
DINT counter. Here, the process data is stored after each minute in a new

CSV formatted file. Once a file is ready, it will be moved automatically to
an FTP server.

47

Version 1.21

Chapter 7. Data Logger

x1
DLOG_OT @

| ‘#A#D-#H-#NARAT FMT e ¥
Timestamp' —COLURMN
GEN_SIN_1 X ¥
GEMN_SIMN ® x? @
T#10m —PT Q- DLOG_REAL 9
100.0 A Cut il LE B X
50.0 —OS 2 N
0.0 oL 'Sinus' —COLUMN
X — b
COUNT_DR x3 T
COUNT DR i DLOG DINT 9
{SET CNT aLLIE B X
N '"Count' —COLURN
| x CLOCK_TRIG FHUP x e
O
-|STEF DOLOG_STORE_FILE_CSY @
et OLOG_STORE_FILE_CSY 9
—RST enahle —EMABLE [

trig_m —{TRIG_M
trig_t —TRIG_T
['ditest #R.csw' FFILEMAME

| cur_dt —OTI
44 —=EF
Kb

OLOG_FILE_TO_FTF
DLOG_FILE_TO_FTF

15

fip_url —{FTP_URL DOME
fip_actiy |—FTP_ACTI BUSY
fin_delete —{FILE_DELETE ERROR_C
fip_timeout —TIMEOUT ERROR_T
[ftp_retry —RETRY b
[fp_retry_time —RETRY_TIME
DMNS_IP4
PLC_IP4
e
{14
IP4_DECODE j]
['192.168.178.25' F—str IP4_ DECODE
13
IF4_DECODE
[1921681781 F—str IP4_DECODE

7.2. DLOG BOOL

Type Function module:
IN_OUT X: DLOG_DATA (DLOG data structure)
INPUT STATE: BOOL (process value TRUE / FALSE)

48 Version 1.21

Chapter 7.

Data Logger

ON: STRING (text for the TRUE state)

OFF: STRING (text for state FALSE)

COLUMN: STRING (40) (process value name)
DELTA: DINT (difference value)

T

—|oFF
—on
coL

= b

STATE B]

DELTA,

DLOG_BOOL

LIkAMN

The module DLOG_BOOL is for logging (recording) of a process value of type BOOL,

and can

only be used in combination with a DLOG_STORE_* module, as this

coordinates of the data structure X to record the data. At recording formats that
support a process value name, such as at DLOG_STORE_FILE_CSV a name can be
provided at COLUMN". Depending on the state of the STATE the TEXT of parameter
OFF or ON is used. If with DELTA parameter a TRUE is specified, the automatic data

logging i
automat
trigger o

7.3.

Type
IN_ OUT
INPUT

s enabled via differential monitoring. By changing the state of STATE
ically a record is stored. This feature can be applied in parallel to the central
n the DLOG_STORE_ * module.

DLOG_DINT

Function module:

X: DLOG_DATA (DLOG data structure)
VALUE: DINT (process value)

COLUMN: STRING (40) (process value name)
DELTA: DINT (difference value)

TP

L

-8

COLLIKAMN
DELTA

DLOG_DINT
LE i

49

Version 1.21

Chapter 7. Data Logger

The block DLOG_DINT is for logging (recording) of a process value of type DINT, and
can only be used in combination with a DLOG_STORE_* module, as this coordinates
of the data structure X to record the data. At recording formats that support a process
value name, such as at DLOG_STORE_FILE_CSV a name can be provided at
COLUMN?". If with DELTA parameter a value not equal 0 is specified, the automatic
data logging is enabled via differential monitoring. Changing the value of VALUE to

+ /- DELTA automatically stores a record. This feature can be applied in parallel to
the central trigger on the DLOG_STORE_ * module.

7.4. DLOG DT

Type Function module:

IN_ OUT X: DLOG_DATA (DLOG data structure)

INPUT FMT: STRING (formatting parameters)
COLUMN: STRING (40) (process value name)
DELTA: UDINT (difference in seconds)

Y
DLOG_DT
—{FhT B
COLLIMM
DELTA
i s

The module DLOG DT is for logging (recording) of a date or time value of
type STRING, and can only be used in combination with a DLOG_STORE_*
module, as this coordinates the record the data by the data structure X.
Using FMT parameter, the formatting will be set. In the FMT parameter can
also be combined with normal text formatting parameters. See
documentation on the block DT_TO_STRF. If the FMT parameter is not
specified, the default formatting

‘#A-#D-#H #N:#R:#T' is used.

At recording formats that support a process value name, such as at
DLOG_STORE_FILE_CSV a name can be provided at COLUMN".

If with DELTA parameter a value greater than 0O is specified, the automatic data
logging is enabled via differential monitoring. If time changes by the value of DELTA
automatically a record is stored. This feature can be applied in parallel to the central
trigger on the DLOG_STORE_ * module. If, for example DELTA is the value 30,
automatically every 30 seconds a record is saved.

50

Version 1.21

Chapter 7. Data Logger

Example:
FMT = '#A-#D-#H-#N#R:#T'
resuls '2011-12-22-06:12:50'

7.5. DLOG_REAL

Type Function module:

IN_OUT X: DLOG_DATA (DLOG data structure)

INPUT VALUE: REAL (process value)
N: INT (number of decimal places)
D : STRING(1) (decimal punctuation character)
COLUMN: STRING (40) (process value name)
DELTA: REAL (difference value)

Y
DLOG_REAL
—waALLIE B
-
COLURM
DELTA
¥

The module DLOG_REAL is for logging (recording) of a process value of
type REAL, and can only be used in combination with a DLOG_STORE_*
module, as this coordinates of the data structure X to record the data.
Using parameter N defines the number of desired decimal places. See
documentation on the module REAL TO_STRF. The D input determines
which character represents the decimal point. Passed with no sign of
parameter D, automatically ',' is used.

At recording formats that support a process value name, such as at
DLOG_STORE_FILE_CSV a name can be provided at COLUMN". If with DELTA
parameter a value not equal 0.0 is specified, the automatic data logging is enabled
via differential monitoring. Changing the value of VALUE to + / - DELTA automatically
stores a record. This feature can be applied in parallel to the central trigger on the
DLOG_STORE_ * module.

51

Version 1.21

Chapter 7.

Data Logger

7.6. DLOG_STRING

Type Function module:
IN_ OUT X: DLOG_DATA (DLOG data structure)
INPUT STR: STRING (process value)
COLUMN: STRING (40) (process value name)
777
DLOG_STRING

—=TR b 3

—{COLIUMN

= b

The module DLOG_DINT is for logging (recording) of a process value of type DINT,
and can only be used in combination with a DLOG_STORE_* module, as this
coordinates of the data structure X to record the data. At recording formats that
support a process value name, such as at DLOG_STORE_FILE_CSV a name can be
provided at COLUMN".

7.7. DLOG_STORE_FILE_CSV

Type
IN_ OUT
INPUT

OUTPUT

Function module:

X: DLOG_DATA (DLOG data structure)

ENABLE: BOOL (release data recording)
TRIG_M: BOOL (manual trigger)

TRIG_T: UDINT (automatic trigger over time)
FILE NAME: STRING (file name)

DTI: DT (Current DATE-TIME value)

SEP: BYTE (separator of the recorded elements)
ERROR_C: DWORD (Error code)

ERROR_T: BYTE (Problem type)

52

Version 1.21

Chapter 7. Data Logger

Y

DLOG_STORE_FILE_CSY
—EMABLE ERROR_CH—
—TRIG_M ERROR_TH
—TRIG_T b X
—FILEMNARME
0TI
—5EF
= b

The module DLOG_STORE_FILE_CSV is for logging (recording) of the
process values in a CSV formatted file. The data can be passed with the
modules DLOG_DINT, DLOG_REAL, DLOG_STRING, DLOG_DT. The
parameter TRIG_M (positive pulse) is used to manually trigger (start) the
storage of process data. With Parameters TRIG_T an automatic time-
controlled release can be realized. If the current date / time value divided
by the parameterized TRIG_T value with residual value is 0, then a Save is
performed.

This also ensures that the store is always performed at the same time

Examples:
TRIG_T = 60
every 60 sec at each new minute in second 0 a store is performed.

TRIG. T =10
In second 0,10,20,30,40,50 a store is performed.
TRIG_ T = 3600

At after each new hour at minute 0 and second 0 a store is performed.

The triggers TRIG_T and TRIG_M can be used in parallel independent of
each other.

With parameters FILENAME the file name (including path if necessary) is
defined. If the filename is changed during the recprding, it will
automatically on-the-fly changed to the new record file (with no data loss).
This change can also be automated. The parameter FILE NAME supports
the use of date / time parameter (see documentation from the module

DT TO_STRF)

Example: FILE NAME = 'Station_01_#R.csV'

At position of '#R' automatically the current minute number is entered. This means
that automatically every minute the file name changes, and therefore the data is
written into the file. Thus, within an entire hour 60 files are created and filled with
data, and in the ring buffer manner overwritten again and again.

53

Version 1.21

Chapter 7. Data Logger

A recording can be done automatically and creates every day, week, month, etc. a
new file as desired. If a new FILE NAME is detected, a possibly existing file is erased
and rewritten.

On DTI parameters, the current date / time value has to be transferred. In SEP the
ASCII code of the delimiter is given.

CSV file format:
See: http://de.wikipedia.org/wiki/CSV_(Dateiformat)
Example of a CSV delimited file ;' and column headings

Date / Time;Z1;Z2;seconds

2010-10-22-06:00:00;1;2;00
2010-10-22-06:00:06;1;2;06
2010-10-22-06:00:12;1;2;12
2010-10-22-06:00:18;1;2;18

ERROR_T:

Value |Properties

1 Problem: FILE_SERVER
The exact meaning of ERROR_C can be read at block FILE_SERVER

7.8. DLOG_STORE_RRD

Type Function module:
IN_OUT X: DLOG_DATA (DLOG data structure)
INPUT ENABLE BOOL (Enable data recording)

TRIG_M: BOOL (manual trigger)

TRIG_T: UDINT (automatic trigger over time)

URL: STRING(string_length) (URL address of the server)
DTI: DT (Current DATE-TIME value)

SEP: BYTE (separator of the recorded elements)

54

Version 1.21

http://de.wikipedia.org/wiki/CSV_(Dateiformat)

Chapter 7. Data Logger

Dns_ip4: DWORD (IP address of the DNS server)
TIMEOUT: TIME (monitoring time)

OUTPUT DONE: BOOL (Data transfer completed without error)
ERROR_C: DWORD (Error code)
ERROR T: BYTE (Problem type)

CX

DLOG_STORE_RRD
EMABLE DOMER—
TRIG_M ERROR_CH
TRIG_T ERROR_TH
—URL B
—OT1
—{3EF
DMNS_IF4
TIMECUT
—= b

The module DLOG_STORE_RRD serves for logging (recording) of the
process values in an RRD database. The data can be passed with the
modules DLOG_DINT, DLOG_REAL, DLOG_STRING, DLOG_DT. The
parameter TRIG_M (positive pulse) is used to manually trigger (start) the
storage of process data. With Parameters TRIG T an automatic time-
controlled release can be realized. If the current date / time value divided
by the parameterized TRIG_T value with residual value is 0, then a Save is
performed.

This also ensures that the store is always performed at the same time

Examples:

TRIG_ T = 60

every 60 sec at each new minute in second 0 a store is performed.
TRIG. T =10

In second 0,10,20,30,40,50 a store is performed.

TRIG_T = 3600

At after each new hour at minute 0 and second 0 a store is performed.

The triggers TRIG_T and TRIG_M can be used in parallel independent of
each other.

On DTI parameters, the current date / time value has to be transferred. In SEP the
ASCII code of the delimiter is given.

If an error occurs during the query it is reported in ERROR _C in
combination with ERROR _T.

ERROR_T:

55

Version 1.21

Chapter 7. Data Logger

Value |Properties

1 The exact meaning of ERROR_C can be read at module DNS_CLIENT

2 The exact meaning of ERROR_C can be read at module HTTP_GET

3 ERROR_C = 1: Data from the RRD-Server (PHP script) are not adopted.

4 ERROR C = 1. The data could be passed in the URL string.
Number of parameters or reduce the amount of data (URL + data <= 250 characters)

With the parameter URL, the access path and the php-script-call is passed.
An example URL:
/myhouse/rrd/test_rrd.php?rrd_db=test.rrd&value=

Access path and name of the php-script
php-script parameter 1 = Database Name

php-script parameter 2 = Process values

The module automatically copies all process values behind "&value="
so that then the following data (example) used

http://my_servername/myhouse/rrd/test_rrd.php?
rrd_db=test.rrd&value=10:20:30:40:50:60:70

The individual process data are, using the parameter SEP (separator), separated
from each other.

It is important that the passed URL string and the process data are not longer than
250 characters.

The structure of the URL is only an example, and can in principle be designed with
own free server applications and scripts in conjunction with their.

What are the possibilities for and benefits rrdtool

rrdtool is a program that saves the time-related measurement data, and
summarizes and visualizes the data. The program was originally
developed by Tobias Oetiker and under the GNU General Public License
(GPL). By publishing a free software now many other authors new
functionality and bug fixes have contributed. rrdtool is available as source
code and an executable program for many operating systems.

Source: http://de.wikipedia.org/wiki/RRDtool

56

Version 1.21

http://de.wikipedia.org/wiki/RRDtool

Chapter 7. Data Logger

57 Version 1.21

Chapter 7. Data Logger

Sample graphs:

Blagoevgrad-R-BRAS - PPPoE Statistics - PPPoEZ2/0.2311 G
2 1.0 .._.- _:‘ L ‘ \ -, B i - e MR i ,,“‘ . E,-__ -:l
] R ¥ v % L 1 ' R Tk Mo WS SR bt} *
= ! i el T
ﬂ quMM%»_u%{fnhmdJNNﬂfwwwv+vﬁwﬂﬂﬂ“_w_mFJnﬂ
E g e e o o S rh s =
i
n
{=5%
T r,_, - F_‘\n- i ,-'.,.'
L o ‘-_._.»1,-__;-\”‘.'.-..-. [
: |

20:00 22:00 00:00 02:00 04:00 O06:00 0B:00 10:00 12:00 14;33 16:00 18:00
O Rx Insufficient Reguests {limit) Current: 305.72 m Average: 251.84 m Maximum: 935.99 p
0 Rx PAD Initiation Packets Current: 721.20 m Average: 1.02 Maximum: 1.62
E Rx PAD Request Packets Current: 176.09 m Average: 228.97 m Maximum: B801.82 m
B Rx PAD Termination Packets Current: 16.:5%9 m Average: g.76 m Maximum: GE.51 m
E Tx PAD Message Packets Current: 33.25 m Average: 14.92 m Maximum: 1B5.84 m
B Tx PAD Network Packets Current: 0.00 Average! 0.00 Maximum: .00
O Tx PAD Offer Packets Current: 465.28 m Average: B00.81 m Maximum: 1.62
B Tx PAD Session Confirmation Packets Current: 176.09 m Average: 228.65 m Maximum: B8BD01.82 m

O Tx PAD Termination Packets Current: B9.78 m Average: 101.15 m Maximum: 382.56 m

Ontbound <~ Erlangs - Inbound

i o o o

Diamond Interconneckt

a0
T
B0

50

4o

0

20

Lo

=L

=20

=30

=40

0E: 00 Lo: oo 12:00 li:00 LE: 00 13:00 20:00

Trank Grp Ports In Ise Cnrrent Load Average Load Peak Load
LETR28%Ex0 30 1 gy 105T% 295.0%
LETHZ6xxul 30 1 3.2% 20.6% T2.8%
LETHZlxxxZ 30 Z0 G5.0% 25.4% a7.7%
LETH21xxx3 30 0 {5 F 55.5% S5.9%
LiGBR 21 xxxd 30 1 4.49% 11.9% 36.1%
LiGBM 21 xeis 30 £ HEARTE 2 B P b 26.8%
Total lgz0 z4 13.1% 32.5% 53.3%

Source - http://www.mrtg.org/

58

Version 1.21

http://www.mrtg.org/

Chapter 7. Data Logger

What is required: hardware, software, tools, etc.

PLC with Network OSCAT-lib

A power-saving PC for the duration of operation (24/7).

On the PC, rrdtol and the php scripts are installed.

The scripts have been developed on a Linux-Xubuntu-PC with PHP.

Quick Start:

A sample program with some values may be recorded, is found the
OSCAT network.lib under demo/DLOG_RRD_DEMO.

The rrdtool installation on Xubuntu (DEBIAN) PC is processed either with
the Synaptic package manager and select install rrdtool, or in the console
with "apt-get install rrdtool".

Script: create_test rrd_db.php = Creates a new rrd database, and once must
be adapted if necessary.

Script: test_rrd.php = This script is called by the PLC with the OSCAT
function module via HTTP-GET. Must usually are not adjusted, and
outputs an error code. If error-free, then output is a “0".

Script: chart_test.php = Script to create the charts from the rrd-DB and
display it on a website. Must usually are not adjusted, and outputs an
error code. If error-free is then output a "0".

Download the three php scripts in the folder to a PC, ie./ var / www / rrd /
and do not forget to adjust the appropriate access rights.

59

Version 1.21

Chapter 7. Data Logger

The demo program in conjunction with the demo php scripts create the
following data or graphic.

L

21:00 22:00 23:00 00: 09 o100 02:00 03:00 04:00 05:00 06: 00 o07:00 08:00
B Testl O Test2 B Test3 B Test4 M Tests O Tests W Test7 Die letzten 12h

Links
http://www.mrtg.orqg/rrdtool/
http://de.wikipedia.org/wiki/RRDtool

http://www.rrze.uni-erlangen.de/dienste/arbeiten-
rechnen/linux/howtos/rrdtool.shtml

http://arbeitsplatzvernichtung-durch-outsourcing.de/marty44/rrdtool.html

60 Version 1.21

http://arbeitsplatzvernichtung-durch-outsourcing.de/marty44/rrdtool.html
http://www.rrze.uni-erlangen.de/dienste/arbeiten-rechnen/linux/howtos/rrdtool.shtml
http://www.rrze.uni-erlangen.de/dienste/arbeiten-rechnen/linux/howtos/rrdtool.shtml
http://de.wikipedia.org/wiki/RRDtool
http://www.mrtg.org/rrdtool/

Chapter 7. Data Logger

php-script - Examples / Templates

create_test rrddb.php

#!/etc/php5/cli -gq

<?php

error reporting(E_ALL);

#
#
#
#
#
#
#

Creates a rrd database
Is called once from the console

12/11/2010 by NetFritz

Create wp.rrd creates the database test.rrd

- Step 60 all 60 sec, a value is expected

DS:t1:GAUGE:120:0:100 a data source named tl is created
the type is gauge. It is waiting 120sec for new data, if not,
the data is written into the database as UNKNOWN.
the minimum and maximum reading

RRA:AVERAGE:0.5:1:2160 this is the rrd-Archiv AVERAGE=average 0.5= ave-

rage interval deviation

#

36h archive every minute, a value, 1:2160=1h =36h 3600sec*3600=129 600

1Minute =60seconds every minute a value, 129600/60 = 2160 Entries

#

B e

RRA:AVERAGE:0.5:5:2016 1lweek archive all bSminutes 1lvalue, 3600*24*7 days
604800Sec / (5 minutes +60 sec = 2016 entries

RRA: AVERAGE: 1Values 0.5:15:2880 30Days archive all 15minutes,
RRA: AVERAGE: 1 year 0.5:60:8760 archive all 60Minuten a value

It is now starting

Command = "rrdtool create test.rrd \
- Step 60 \
DS:t1:GAUGE:120:0:100 \
DS:t2:GAUGE:120:0:100 \
DS:t3:GAUGE:120:0:100 \
DS:t4:GAUGE:120:0:100 \
DS:t5:GAUGE:120:0:100 \
DS:t6:GAUGE:120:0:100 \
DS:t7:GAUGE:120:0:100 \
RRA:AVERAGE:0.5:1:2160 \

RRA:AVERAGE:0.5:5:2016 \
RRA:AVERAGE:0.5:15:2880 \
0.5

RRA:AVERAGE: :60:8760";

61

Version 1.21

Chapter 7. Data Logger

system ($command) ;

?>

test_rrd.php

<?php

$ Rrd db = urldecode($ GET['rrd db']);

$ Value = urldecode($ GET['value'l);

$commando = "/usr/bin/rrdtool update " . $rrd db . " N:" . S$value;
system ($commando, $fehler) ;
echo S$fehler . Scommando;

?>

chart_test_rrd.php

<?php
/ / Create chart for test scores, and is invoked by the browser
Scommand="/usr/bin/rrdtool graph testO.png \
--vertical-label=Test \
--start end-12h \
--width 600 \
--height 200 \
--alt-autoscale \
DEF:tl=test.rrd:tl:AVERAGE
DEF:t2=test.rrd:t2:AVERAGE
DEF:t3=test.rrd:t3:AVERAGE
DEF:t4d4=test.rrd:t4:AVERAGE
DEF:t5=test.rrd:t5:AVERAGE

DEF:t6=test.rrd:t6:AVERAGE

= - s s s s

DEF:t7=test.rrd:t7:AVERAGE
LINE1:t1#FF0000:Testl \
LINE1:t2#6EFF00:Test2 \
LINE1:t3#CD0O4DB:Test3 \

62 Version 1.21

Chapter 7.

Data Logger

LINE1
LINE1
LINE1
LINE1

:t4#008000:Testd \
:t5#0000FF: Test5 \
:t6#0000FF:Test6 \
:t7#0000FF:Test7 \
COMMENT: 'The last 12 hours' ";

system ($Scommand) ;

echo "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD XHTML 1.0 Transitional//EN\"
\"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd\">\n";

echo "<html xmlns=\"http://www.w3.0rg/1999/xhtml\">\n";

echo " <head>\n";

echo " <title>Test</title>\n";

echo " </head>\n";

echo " <body>\n";

echo ("<center></center>\n");

echo " <center>Die letzten 12h</center>\n";

Echo "Error =". S$fehler;

echo " </body>\n";

echo "</html>\n";

?>

7.9. DLOG FILE_TO FTP

Type

Function module:

IN_OUT X: DLOG_DATA (DLOG data structure)
INPUT FTP_URL: STRING(STRING_LENGTH) (FTP access path)

FTP_ACTIV : BOOL (PASSIV = 0 / ACTIV = 1)
FILE_DELETE: BOOL (delete files after transfer)
TIMEOUT: TIME (time)

RETRY: INT (number of repetitions)

RETRY_TIME: TIME (waiting period before repetition)
Dns_ip4: DWORD (IP4 address of the DNS server)

63

Version 1.21

Chapter 7. Data Logger

Dns_ip4: DWORD (IP4 address of the DNS server)
OUTPUT DONE: BOOL (Transfer completed without error)

BUSY: BOOL (Transfer active)

ERROR_C: DWORD (Error code)

ERROR_T: BYTE (Problem type)

T

DLOG_FILE_TO_FTF
—{FTF_URL DOMNER
—{FTF_ACTM BUSY
—{FILE_DELETE ERROR_CH—
—{TIMEQLIT ERFOR_TH
—RETRY B
—RETR~_TIME
—0OME_IFP4
—FLC_IP4
e

The module DLOG_FILE_TO_FTP is used to automatically transfer the by
DLOG_STORE_FILE_CSV generated from files to an FTP-server. The FTP_URL
parameter contains the name of the FTP server and optionally the user
name and password, an access path and an additional port number for the
data channel. If no Username or password is transferred, the device
automatically tries to register as "Anonymous". The parameter FTP_ACTIV
determined whether the FTP server is operated in active or passive mode.
In the ACTIV mode, the FTP server tries to establish the data channel for
control, however these may cause problems by security software, firewall,
etc. because it could block the connection request. For this purpose, in the
firewall a corresponding exception rule has to be defined. In the passive
mode, this problem is alleviated since the controller establishes the
connection, and can easily pass through the firewall. The control channel is
always set up on port 20, and the data channel via standard PORT21, but
this is in turn is depending whether active or passive mode is used, or
optional PORT number in the FTP-URL is specified. With the parameter
FILE_DELETE can be determined whether the source file should be deleted
after successful transfer. This works on FTP and even on the control side.
In specifying FTP directories the behavior depends on FTP server, whether
they exist in this case or are created automatically. Normally, these should
be already available. The size of files is no limit per se, but there are
practical limits: Space on PLC, FTP storage and the transmission time. With
dns_ip4 the IP address of the DNS server must be specified, if in the FTP
URL a DNS name is given, alternatively, an IP address can be entered in
the FTP URL. At parameters PLC_IP4 the own IP addresses has to be
supplied. If errors occur during transmission these are passed to the
output ERROR_C and ERROR_T. As long as the transfer is running, BUSY =

64

Version 1.21

Chapter 7. Data Logger

TRUE, and after an error-free completion of the operation, DONE = TRUE.
Once a new transfer is started, DONE, ERROR_T and ERROR_C are reseted.

If parameter RETRY = 0, then the FTP transfer was repeated until it
completes successfully. If RETRY state at a value > 0, the FTP transfer is
just as often repeated in transmission failure. Then this job is simply
discarded and the process continues with the next file. With RETRY-TIME
the waiting time between the repetitions can be defined.

The module has integrated the IP_CONTROL and must not be externally
linked to this, as it by default would be necessary.

Background: http://de.wikipedia.org/wiki/File_Transfer Protocol

URL examples:
ftp://username:password@servername:portnummer/directory/
ftp://username:password@servername
ftp://username:password @ servername / directory /
ftp://servername
ftp://username:password@192.168.1.1/directory/
ftp://192.168.1.1

65

Version 1.21

http://de.wikipedia.org/wiki/File_Transfer_Protocol

Chapter 7. Data Logger

ERROR_T:

Value |Properties

1 Problem: DNS_CLIENT
The exact meaning of ERROR_C can be read at module DNS_CLIENT

2 Problem: FTP control channel
The exact meaning of ERROR_C can be read at module IP_CONTROL

3 Problem: FTP data channel
The exact meaning of ERROR_C can be read at module IP_CONTROL

4 Problem: FILE_SERVER
The exact meaning of ERROR_C can be read at block FILE_SERVER

5 Problem: END - TIMEOUT

ERROR_C contains the left WORD of the step number, and the right WORD has the re-
sponse code received by the FTP server.

The parameters must be considered first as a HEX value, divided into two WORDS, and
then be considered as a decimal value.

Example:

ERROR_T=5

ERROR_C = 0x0028_00DC
End-step number 0x0028 = 40
Response-Code 0x00DC = 220

7.10. DLOG_FILE_TO_SMTP

Type Function module:
IN_ OUT SERVER: STRING (URL of the SMTP server)
MAIL FROM: STRING (return address)
MAILTO: STRING (string_length) (recipient address)
SUBJECT: STRING (subject text)
SUBJECT: STRING (subject text)
FILES: STRING (string_length) (files to be sent)
X: DLOG_DATA (DLOG data structure)

66 Version 1.21

Chapter 7. Data Logger

INPUT FILE_DELETE: BOOL (delete files after transfer)
TIMEOUT: TIME (time)
DTI: DT (current date-time)
DTI_OFFSET: INT (time zone offset from UTC)
RETRY: INT (number of repetitions)
RETRY_TIME: TIME (waiting period before repetition)
Dns_ip4: DWORD (IP4 address of the DNS server)
OUTPUT DONE: BOOL (Transfer completed without error)
BUSY: BOOL (Transfer active)
ERROR_C: DWORD (Error code)
ERROR_T: BYTE (Problem type)

Y

DLOG_FILE_TO_SMTF
—FILE_DELETE DOMER
—{TIMEDUT BUSY
—0OTI ERROR_CH—
—DOTI_OFFSET ERROF_TH
—RETRY = SERVER
—RETREY_TIME & rAILFROM
—DOMS_IP4 B MAILTO
—5ERVER & t SUBJECT
—MAILFROM & e BODY
—MAILTD & B]
—SUBJECT &

—BODY &
—= b

The module DLOG _FILE_TO SMTP is used to automatically transfer the of
DLOG_STORE_FILE_CSV generated files as e-mail to an e-mail server.

The module uses internally the SMTP_CLIENT for sending.

The SERVER parameter contains the name of the SMTP server and
optionally the user name and password and a port number. If you pass a
user name and password, the procedure is according to standard SMTP.

SERVER: URL Examples:
username:password@smtp_server
username:password@smtp_server:portnumber
smtp_server

Special case:

67

Version 1.21

Chapter 7. Data Logger

If in the username is a '@"' included this must be passed as '%' - character,
and is then automatically corrected by the module again.

By specifying user and password the Extend-SMTP is used, and
automatically the safest possible Authentication method is used. If
parameter is to specify the MAIL FROM sender address:

i.e. oscat@gmx.net

Optionally, an additional "Display Name" be added This is displayed the
email client automatically instead of the real return address. Therefore,
always an easily recognizable name to be used.

i.e.. oscat@gmx.net;Station 01

The email client shows as the sender then "Station_01". Thus, more
people will use the same email address but send a own "Alias".

At the MAILTO parameter can To, Cc, Bc be specified. The different groups
of recipients are specified by '#' as the separator in a list. Multiple
addresses within the same group are divided with the separator ";" . In
each group can be defined unlimited count of recipients, the only
limitation is the length of the mailto string.

To;To..#Cc;Cc...#Bc;Bc...

Examples.
ol@gmx.net;o2@gmx.net#ol@gmx.net#o2@gmx.net
defines two TO-addresses, one CC-address and a Bc-address

##02@gmx.net
defines only one BC-address.

With subject, a subject text will be specified, as well as with BODY an email
text content. The current Date / Time value must be definded at DTI, and
at DTI_OFFSET the correction value as an offset in minutes from UTC
(Universal Time). If the DTl in UTC time is passed, at DTI_OFFSET a 0 must
be passed.

The monitoring time can be specified with parameter TIMEOUT. At dns_ip4
must be specified the IP address of the DNS server, if in SERVER a DNS
name is specified. If errors occur during the transmission, they are passed
at ERROR_C and ERROR T. As long as the transfer is running, BUSY =
TRUE, and after an error-free completion of the operation, DONE = TRUE.
Once a new transfer is started, DONE, ERROR T and ERROR_C are reseted.

If parameter RETRY = 0, then the SMTP transfer was repeated until it
completes successfully. If RETRY state at a value > 0, then the SMTP

68 Version 1.21

Chapter 7. Data Logger

transfer is just as often repeated at transmission failure. Then this job is
simply discarded and the process continues with the next file. With RETRY-
TIME the waiting time between the repetitions can be defined.

The parameter FILE_DELETE = TRUE a file is deleted on the controller after
successful transfer via email.

The module has integrated the IP._ CONTROL and so must not be externally
linked to this, as it would be at default necessary.

Basics:
http://de.wikipedia.org/wiki/SMTP-Auth
http://de.wikipedia.org/wiki/Simple_Mail Transfer_ Protocol

ERROR_T:

Value |Properties

1 Problem: DNS_CLIENT
The exact meaning of ERROR_C can be read at module DNS_CLIENT

2 Problem: SMTP Channel
The exact meaning of ERROR_C can be read at module IP_CONTROL

4 Problem: FILE_SERVER
The exact meaning of ERROR_C can be read at block FILE_SERVER

5 Problem: END - TIMEOUT

ERROR_C contains the left WORD the end of the step number, and in the right WORD
the last response code received by the SMTP server.

The parameters must be considered first as a HEX value, divided into two WORDS, and
then be considered as a decimal value.

Example:

ERROR_T=5

ERROR_C = 0x0028_00FA
End-step number 0x0028 = 40
Response-Code 0x00DC = 250

7.11. UNI_CIRCULAR BUFFER

Type Function module:
IN_ OUT DATA: UNI_CIRCULAR BUFFER_DATA (data storage)

69 Version 1.21

http://de.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
http://de.wikipedia.org/wiki/SMTP-Auth

Chapter 7. Data Logger

T

UMNI_CIRCULAR_BUFFER
DATA & B OATA,

The module UNI_CIRCULAR_BUFFER is a ring buffer in the FIFO (first in - first out)
principle, and can process any data as a byte stream.

For this purpose, in the data structure UNI_CIRCULAR_BUFFER_DATA all can be
processed.

The following commands are supported on DATA.D_MODE.

01 Element to write to buffer

10 Element of Buffer read but not to remove

11 The above command 10 read with item is removed.
12 read element from buffer and remove

99 Buffer is reset. All data is deleted

With DATA.D_HEAD (WORD) in the right byte can be provided the element
type, and in the left byte optional an additional user ID.

D _HEAD = LEFT-BYTE (ADD-Ino), RIGHT-BYTE (Type ID)

Type codes:

1 = STRING (For DATA.D_STRING, the string must be provided)

2 = REAL (For DATA.D_REAL, the REAL value is passed)

3 = DWORD (In the DWORD the DATA.D_DWORD must be passed)
X = header information without data

In DATA.BUF_SIZE the number of bytes output, to show the dropped items in total.
With DATA.BUF_COUNT the number of in Buffer contained elements is provided.
And on BUF_USED will issue the occupancy of the buffer as a percentage value.

When an item is written in the buffer, and the required free space (memory) does not
exist, after calling the module, the DATA.D_MODE remains unchanged. The
command was successfu only if D_MODE contains 0 after module call.

When reading elements, the same operation is essential.

70

Version 1.21

Chapter 7. Data Logger

Only if D_MODE subsequently is 0, in D_HEAD the data type can be found, and if
necessary, the data from D_STRING, D_REAL, D_DWORD can be read. After
successful reading step, the deletion of the element to be performed with command

11.

Example: Writing element:

DATA.D_MODE: = 1; (* command to write data *)
DATA.D_HEAD: = 1; (* element-type = STRING *)
DATA.D_STRING:= This is the text';

module-call()

if DATA.D_MODE = 0, then the element was successfully saved

Example: Reading element:

DATA.D_MODE:= 10; (* read command * element)
module-call()

result

DATA.D_HEAD = 1; (* Element-Type = STRING *)
DATA.D_STRING = This is the text';
DATA.D_MODE =0

Example: Delete element:
DATA.D_MODE:= 11; (*f command * delete item)

module-call()
DATA.D_MODE = 0; (* item was deleted *)

71

Version 1.21

Chapter 8. Converter

8. Converter

8.1. BASEG64

The BASE64 encoding is a process for Encoding of 8-bit binary data into a
string consisting of only 64 globally available ASCII characters. Applicati-
on is HTTP Basic Authentication, PGP signatures and keys, and MIME enco-
ding for e-mail. To enable the SMTP protocol as the easy transport of bina-

ry data, a conversion is necessary, as foreseen in the original version, only
7-bit ASCII characters.

Byte 1 Byte 2 Byte 3
Fl6|3(4|3|2(1(0)7|6(5|4|F|2(1|0|F(6|5|4|F(2|1|0

S14(32(1)015|4(3|2(1|0|5|4(3|2(1|0]5|4(3|2(1|0

Feichen 1 Zeichen 2 Feichen 3 Feichen 4

When encoding always three bytes of byte stream (24 bit) are devided in
6-bit blocks. Each of these 6-bit blocks results in a number between 0 and
63. This results in the following 64 printable ASCIlI characters [A-Z] [a-Z]
[0-9], [+/]. The encoding increases the space requirements of the data
stream by 33%, from 3 characters each to 4 characters each. If the length
of the coding is not divisible by 4, filler characters will be appended at the
end. In this case the sign "="is used .

8.2. BASE64_DECODE_STR

Type Function module

Input RUN: BOOL (positive edge starts conversion)
Output DONE: BOOL (TRUE if conversion is completed)
1/ 0O STR1: STRING(192) (text in BASE64 format)

STR2: STRING(144) (converted normal text)

72

Version 1.21

Chapter 8. Converter

PP

ELSE6d DECODE STR
—{RrTm B "~ DONE|
sTR1 & B STRL
=TR2 & b STRZ

With a BASE64_DECODE_STR encoded in BASE64 text can be converted
back to plain text. With a positive edge of RUN the process starts. Here
DONE is immediately reseted, if it has been set by a previous conversion.
The BASE64 encoded text is passed on STR1, and after the conversion the
plain text is available in STR2, and DONE is set to TRUE.

Example:
Text in STR1

‘T3BIbiBTb3VyY2UgQ29tbXVuaXR5IGZvciBBAXRvbWF0aW9ulFRIY2hub2xv -
Z3k="

Result in STR2
Text in STR2 = 'Open Source Community for Automation Technology"

8.3. BASE64 DECODE_STREAM

Type Function module
Input SIZE1: INT (number of bytes in the BUF1 for decode)
Output SIZE2: INT (number of bytes in BUF2 of the decoded results)

1/ O BUF1: ARRAY [0..63] OF BYTES (BASE64 data for conversion)

BUF2: ARRAY [0..47] OF BYTES (converted data)

e

BEASE64 DECODE STRELM
s1zE1 "~ sIZEzZl-
JEUF1 t BUF1
—{puFz & b BUF2

With BASE64 DECODE_STREAM arbitrarily long BASE64 byte streams are
decoded. In one pass, up to 64 bytes are decoded, which in turn emerged
from a maximum of 48 bytes each. Here, the source data is passed to the

73

Version 1.21

Chapter 8. Converter

decoder over BUF1 in the data-stream manner as individual blocks of
data, and in decoded form re-issued in BUF2. The user has to provide the
further processing of the BUF2 data before the next block of data is con-
verted. The number of bytes in BUF2 is issued by SIZE2 from the module.

8.4. BASE64_ENCODE_STR

Type Function module

Input RUN: BOOL (positive edge starts conversion)
Output DONE: BOOL (TRUE if conversion is completed)
1/ O STR1: STRING (144) (Text to convert)

STR2: STRING (192) (converted text in BASE64 format)

797

EALSEGE ENCODE STR
UM h "~ DOME|-
sTR1 & b STR1
sTRz & b STRZ

With BASE64_ENCODE_STR a standard text can be converted to a BASE64
encoded text. With a positive edge of RUN the process starts. Here DONE
is immediately reseted, if it has been set by a previous conversion. The
BASE64 encoded text is passed on STR1, and after the conversion the BA-
SE64 text is available in STR2, and DONE is set to TRUE.

Example:
Text in STR1 = 'Open Source Community for Automation Technology'
Result in STR2

‘T3BIbiBTb3VyY2UgQ29tbXVuaXR5IGZvciBBAXRvbWFO0aW9ulFRIY2hub2xv -
Z3k="

8.5. BASE64 ENCODE_STREAM

Type Function module
Input SIZE1: INT (number of bytes in the BUF1 to encode)

74

Version 1.21

Chapter 8. Converter

Output SIZE2: INT (number of bytes in the encoded BUF2 results)
/O BUF1: ARRAY [0..47] OF BYTES (data to convert)
BUF2: ARRAY [0..63] OF BYTES (BASE64 converted data)

2772

BELSE64 ENCODE STRELM
Js1zE1 ~ sIZEZl
JEUF1 t BUF1
—{purFz & t BUF2

With BASE64 ENCODE_STREAM arbitrarily long byte data stream accor-
ding to BASE64 can be encoded. In one pass, up to 48 bytes are conver-
ted, in turn, result more than 64 bytes. Here, the source data is passed to
the encoder over BUF1 in the data-stream manner as individual blocks of
data, and in coded form re-issued in BUF2. The user has to provide the fur-
ther processing of the BUF2 data before the next block of data is conver-
ted. The number of bytes in BUF2 is issued by SIZE2 from the module.

8.6. HTML_DECODE

Type Function : STRING(string_length)
Input IN: STRING(String)
Output STRING(string_length) (string)

HTML_DECODE
IN HTML_DECODE

HTML_DECODE converts reserved characters which are in the form
&name; stored HTML code, in the original character. In addition, all coded
characters are converted into the corresponding ASCIl code. Special cha-
racters can be represented by the following string in HTML:

- &#NN, where NN represents the position of the character within the cha-
racter map in decimal notation.

- &#XNN, or &#XNN where NN represents the position of the character wi-
thin the character table in hexadecimal notation.

&name; Special characters have names like € for €.
The reserved characters in HTML are:
& Is encoded as &

75

Version 1.21

Chapter 8. Converter

> |s encoded as >

< Is encoded as <

"is coded as "

Examples:

HTML _DECODE('1 ist >als 0') = '1 is > als 0';

HTML DECODE('&#D79;&#D83;&#D67;&#D65;&#D84;') = 'OSCAT;
HTML _DECODE('&#xH4F;&#xH53;&#xH43;&#xHA41;&#xH54;') = 'OSCAT';

HTML_DECODE('&#XH4F; &#XH53;&#XH43; &#XHA1,;&# XH54;") =
'OSCAT';

8.7. HTML_ENCODE

Type F unction : STRING(string_length)
Input IN: STRING(String)

M: BOOL (mode)
Output STRING(string_length) (string)

[0
HTML_ENCODE
IN HTML_ENCODE
M

Html_encode converts in HTML reserved characters to form &Name;. If the
input M is set to TRUE also all the characters with the code 160-255 and
128 are implemented in the &Name convention.

Caution should be exercised in the use of character sets because they are
not the same on all systems and deviations are common in special charac-
ters. Thus, for example, not all systems the € character at position 128 in
the character map.

The reserved characters in HTML are:

& Is encoded as &

> |s encoded as >

< Is encoded as <

"is coded as "

Html_encode converts the string ‘1 > than 0 'into '1 is > than 0'.

76

Version 1.21

Chapter 8. Converter

8.8. IP4_CHECK

Type Function : BOOL
Input NIP: DWORD (network IP address)
LIP: DWORD (Local IP address)
SM: DWORD (Subnet Mask)
Output BOOL (TRUE if NIP and LIP are in the same Subnet)

1]

IP4_CHECK
NIP IP4_CHECK
LiP
SM

IP4_CHECK checks if a network address of the NIP and the local address
LIP are in the same Subnet lie. Both addresses will be first masked with
the Subnet mask and then tested for equality. Only the bits which are in
the Subnet Mask TRUE are examined for equality. The network addresses
must correspond to the IPv4 format and presented as a DWORD. If IP ad-
dresses must be tested that are String they are to be converted to
DWORD before.

The following example shows 2 IP addresses and a Subnet Mask as String
are tested after appropriate conversion to DWORD there. The output is
TRUE because both addresses are in the same Subnet .

{0

IP4_DECODE
[st IP4_DECODE|-FrEmm @
@ IP4_CHECK y
IP4_DECODE T e IP4_CHECK,]
—str IP4_DECODE P
@ %SM
IF4_DECODE T
[st |P4_DECODE HEFImE7TaD]
8.9. IP4 DECODE
Type Function : DWORD
Input STR: STRING(15) (string that contains the IP address)

Output DWORD (decoded IP v4 address)

IP4_DECODE {?
atr IP4_DECODE-

77

Version 1.21

Chapter 8. Converter

IP4_DECODE decodes the in STR stored string as a IP v4 address and re-
turns it as a DWORD. A return of 0 means an invalid address or an address
of '0.0.0.0 ' was evaluated. IP4 may be used for evaluating a Subnet Mask
of the IP v4 format.

8.10. IP4_TO _STRING

Type Function : STRING(15)
Input IP4: BOOL (string that contains the IP address)
Output DWORD (decoded IP v4 address)
IP4_TO_STRING °
leq IP4_TO_STRING

IP4_TO_STRING converts the IP4 address stored as DWORD in a string. The
format is 'NNN.NNN.NNN.NNN".

8.11. IS_IP4

Type Function : BOOL
Input STR: STRING (string to be tested)
Output BOOL (TRUE if STR contains a valid IP v4 address)

IS_IP4
str I15_IP4

IS_IP4 checks if the string str contains a valid IP v4 address, if not FALSE is
returned. A valid IP v4 address consists of 4 numbers from 0 - 255 and
they are separated each with one point. The address 0.0.0.0 is there clas-
sified as wrong.

IS_IP4(0.0.0.0) = FALSE
IS_IP4(255.255.255.255) = TRUE
IS _1P4(256.255.255.255) = FALSE
IS_IP4(0.1.2.) = FALSE
IS_IP4(0.1.2.3.) = FALSE

78

Version 1.21

Chapter 8. Converter

8.12. IS_URLCHR

Type Function : BOOL
Input IN: STRING (string to be tested)
Output BOOL (TRUE if STR contains a valid IP v4 address)

J IS_URLCHR '
IN I5_URLCHR

IS URLCHR checks if the string contains only valid characters for a URL en-
coding. If the string contains reserved characters it returns FALSE, otherwi-
se TRUE.

For a URL following characters are valid:

[A..Z]
[a..z]
[0..9]
[-._~1]

all other characters are reserved or not allowed.

8.13. MD5_AUX

Type Function: DWORD
Input N: INT (internal use)

A: DWORD (Internal use)
B: DWORD (Internal use)
C: DWORD (internal use)
D: DWORD (internal use)
X: DWORD (Internal use)
U: INT (internal use)

T:

DWORD (Internal use)

At the MD5 hash generation several cycles through the complex mathe-
matical calculations which are processed. Thus, the amount of redundant
code in the module MD5 STREAM remains small, periodic calculations
have been displaced as a macro in the MD5_AUX. This module has only in
conjunction with the block MD5_STREAM a useful application.

79

Version 1.21

Chapter 8. Converter

MDS_AUX
MD5_AUX|-

H o2 OW k=S

8.14. MD5_STR

Type Function module

Input RUN: BOOL (Positive edge starts the calculation)

Output DONE: BOOL (TRUE if calculations are complete)
MD5: ARRAY[0..15] OF BYTE (current MD5 hash)

/0O STR: STRING(string_length) (Text for HASH creation)
Mh5_oTR
— R DONE—
—3TR F B 53TR
—MD5 F MDD 5

With MD5_STR a string of the MD5 hash can be calculated by. In the STR a
string is passed to the module, and a positive edge at input "RUN", the
calculation starts. DONE is immediately reset at startup, and after the pro-
cess is DONE is set to TRUE. Then, at the parameter HASH the actual cal-
culated HASH value is available. (See module MD5-STREAM).

Example:
the MD5 hash of 'OSCAT' is 30f33ddb9f17df7219elacdea3386743

8.15. MD5_STREAM

Type Function module
1/ 0O MODE: INT(mode: 1 = init / 2 = Data Block / 3 = Complete)

80

Version 1.21

Chapter 8. Converter

BUF: ARRAY[0..63] OF BYTES (source data)
MD5: ARRAY [0..15] OF BYTE (current MD5-HASH)
SIZE: UDINT (number of data)

Output POS: UDINT(start address of the requested data block)

227

MD5_STREAM
—MODE & POSH—
—{BITF & & MODE
—MDE & E1IF
—{SIZE & = MD5

P SIZE

The module MD5 STREAM allows the calculation of the MD5 (Mes-
sage-Digest Algorithm 5) of a cryptographic hash function.

This can be created from any data stream a unique check value. It is vir-
tually impossible to find two different messages with the same test value,
this is referred to as collisions free. This can be used to check a configura-
tion file for change or manipulation.

With the hash algorithm (MD5) a hash value is generated from 128 bits in
length for any data. The maximum length of the stream is on this module
is limited to 2732 (4 gigabyte). The result is a 16 bytes hash value at pa-
rameters MD5.

Example:

There are 2000 bytes in a buffer and are read using the file system in
blocks.

User set MODE to 1 and SIZE to 2000. Calling the MD5_STREAM

MD5 STREAM performs a initialization and set MODE to 2 and passes at
POS the index (base 0) of the desired data. At SIZE the number of data is
set, which are copied into the data memory BUF.

User copies the requested data in the BUF and calls the module
MD5 STREAM repeatedly. This step is repeated until MODE remains at 2.

If the MD5_STREAM has processed the last data block, this set MODE to 3.
It can also happen that the last block, that at the SIZE length zero is set,
therefore, so no data are copied into BUF .

81

Version 1.21

Chapter 8. Converter

The current hash value can then be processed as a result.

Example:
the MD5 hash of 'OSCAT" is 30f33ddb9f17df7219elacdea3386743

8.16. MD5 TO _STRH

Type Function: STRING(32)
Input MD5 : ARRAY[0..15] OF BYTE (MD5-HASH)
MD5_T0_STRH
—MDs MD5_To_$TRH-

The module MD5 MD5_TO_STRH converts the MD5 byte array to a hex
string.

8.17. RC4_CRYPT_STREAM

Type Function module

/0O MODE: INT(mode: 1 = init / 2 = Data Block / 3 = Complete)
KEY: STRING(40) (320-bit long secret key)
BUF: ARRAY[0..63] OF BYTES (data block to process)
SIZE: UDINT (number of data)

Output POS: UDINT(start address of the requested data block)

The module RC4_CRYPT_STREAM uses the RC4 data encryption to process
an almost arbitrarily long data stream. This standard is used for example
in an SSH, HTTPS, and WEP or WPA, and is thus widely used. The algorithm
can in principle operate at up to 2048 bit key, but this is limited to the mo-

82

Version 1.21

Chapter 8. Converter

Y

RC4 CRYPT_STREAM
—{MODE & POSH
—KEY & = MODE
—BUF & & KEY
—SIZE & &= BUF

= SIZE

dule on a 40-character key (but it can always be adjusted to up to 250
characters). Thus, it presents a key length of 320 bits, which are designed
for applications on a PLC more than adequate. The maximum length of the
stream is on this module is limited to 2732 (4 gigabyte). The module can
be used for encryption as well as to decrypt RC4 data. 64 bytes per cycle
can still be processed, they will be processed in serial block mode. The
data been encrypted or decrypted, remains in the module BUF for further
processing, and must, of course, processed previously by the user before
each new block of data.

Example:

There are 2000 bytes in a buffer and are read using the file system in
blocks.

User sets mode is to 1 and SIZE to 2000. Calling the RC4_CRYPT_STREAM

RC4_CRYPT_STREAM performs initialization and set MODE to 2 and passes
at the POS the index (base 0) to the desired data. At SIZE the number of
data, to be copied into the data memory BUF, is set .

User copies the requested data in the BUF and calls the module
RC4_CRYPT_STREAM repeatedly. This step is repeated until MODE remains
at 2. If the RC4_CRYPT_STREAM has processed the last data block, this set
MODE to 3.

8.18. SHA1l STR

Type Function module
Input RUN: BOOL (Positive edge starts the calculation)

83

Version 1.21

Chapter 8. Converter

Output DONE: BOOL (TRUE if calculations are complete)
HASH : ARRAY[0..19] OF BYTE (actual SHA1-HASH)

/0O STR: STRING(string_length) (Text for HASH creation)
SHA-l-_-STR
—RIIN DONE—
—3TR F F 3TE,
—5HALl F F 3HAL

With SHA1 STR the SHA1 hash can be calculated in a string. In the STR a
string is passed to the module, and a positive edge at input "RUN", the
calculation starts. DONE is immediately reset at startup, and after the pro-
cess is DONE is set to TRUE. Then, at the parameter HASH the actual cal-
culated HASH value is available. (See module SHA1-STREAM).

Example:
Hash value of 'OSCAT' is 4fe4fa862f2e7b91bf95abe9f22831247a3afd35

8.19. SHA1l STREAM

Type Function module

/0O MODE: INT(mode: 1 = init / 2 = Data Block / 3 = Complete)
BUF: ARRAY[0..63] OF BYTES (source data)
SHA1: ARRAY [0..19] OF BYTE (current SHA1-HASH)
SIZE: UDINT (number of data)

Output POS: UDINT(start address of the requested data block)

7

SHAl STREAM
—{MODE & POSH—
—{BTIF = = MODE
—{5HAL & & BT
—{4IZE B SHAL

B STZE

The module SHA1 STREAM allows the calculation of standard cryptogra-
phic hash function SHA-1 (Secure Hash Algorithm).

84

Version 1.21

Chapter 8. Converter

This can be created from any data stream a unique check value. It is vir-
tually impossible to find two different messages with the same test value,
this is referred to as collisions free. This can be used to check a configura-
tion file for change or manipulation.

With the secure hash algorithm (SHA1l) a hash value is generated from
160 bits in length for any data. The maximum length of the stream is on
this module is limited to 2732 (4 gigabyte). The result is a 20-byte hash
value, issued as ARRAY [0..19] OF BYTE.

Example:

There are 2000 bytes in a buffer and are read using the file system in
blocks.

User sets MODE to 1 and SIZE to 2000. Calling the SHA1_STREAM

SHA1_STREAM performs initialization and set MODE to 2 and passes at the
POS the index (base 0) of the desired data. At SIZE the number of data, to
be copied into the data memory BUF, is set .

User copies the requested data in the BUF and calls the module
SHA1 STREAM repeatedly. This step is repeated until MODE remains at 2.

[fzy] If the SHA1 STREAM has processed the last data block, this set MODE
to 3. It can also happen that the last block, that at the SIZE length zero is
set, therefore, so no data are copied into BUF .

The current hash value can then be processed as a result.

Example:
Hash value of 'OSCAT' is 4fe4fa862f2e7b91bf95abe9f22831247a3afd35

8.20. SHA1 TO STRH

Type Function: STRING (40)

85

Version 1.21

Chapter 8. Converter

Input MD5 : ARRAY[0..19] OF BYTE (SHA1 hash)

SHAl TO_STRH
—{3Hal SHAl TO_STRH

The module converts the SHA1 TO_STRH SHA1 byte array to a hex string.

8.21. STRING TO URL

Type Function : URL

Input STR: STRING (string_length) (Unified Resource Locator)
DEFAULT _PROTOCOL: STRING(replacement protocol)
DEFAULT _PATH: STRING (alternate path)

Output URL (URL)

0
DECODE_URL

—STR DECODE_URL
DEFAULT_PROTOCOL
DEFAULT_PATH

STRING_TO _URL split a URL (Uniform Resource Locator) into its com-
ponents and stores it in the data type URL. If in STR no path or protocoll is
specified, so the function sets the missing values automatically with the
specified replacement values.

A URL is as follows:
Protocol : / / user : Password @ domain : port / path ? query # anchor

Example: ftp://hugo:nono@oscat.de:1234/download/manual.html

some parts of the URL are optional, such as user name, password, Anchor,
Query ...

86

Version 1.21

ftp://hugo:nono@oscat.de:1234/download/manual.html
mailto:passwort@domain
mailto:passwort@domain
mailto:passwort@domain

Chapter 8. Converter

8.22. URL_DECODE

Type Fu FUNCTIONS: STRING(string_length)
Input IN: STRING (String)
Output STRING(string_length) (string)

]
URL_DECODE
IN URL_DECODE

URL_DECODE converts the in %HH encoded special characters in the
string IN in the appropriate ASCII code. In a URL encoding only the charac-
ters [A.. Z, a.. Z found, 0 .9, -._~] can occur. Other characters with a %
character, followed by 2 characters long Hexadecimal of the character are
shown. The reserved character '#' is encoded as a '%23".

8.23. URL_ENCODE

Type Function : STRING(STRING_LENGTH)
Input IN: STRING (String)
Output STRING (STRING_LENGTH) (string)

@
J URL_ENCODE E\
IN URL_EMNCODE

URL _ENCODE converts reserved characters in the string IN in the string
'%HH'. In a URL encoding only the characters [A.. Z, a.. Z found, 0.9, -. ~]
can occur. Other characters with a % sign followed by the two-character
hexadecimal code of the character are shown. The reserved character '#'
is encoded as a '%23".

8.24. URL_TO STRING

Type Function: STRING (string_length)
Input IN: STRING(Unified Resource Locator)
Output URL (URL)
J URL_TO_STRING '\?
IN URL_TO_STRING

87

Version 1.21

Chapter 8. Converter

URL_TO_STRING generates from stored data in IN with type URL a Unified
Resource Locator as String .

A URL is as follows:
protokoll://user:passwort@domain:port/path?query#anchor
Example: ftp://hugo:nono@oscat.de:1234/download/manual.html

some parts of the URL are optional, such as user name, password, Anchor,
Query ...

88 Version 1.21

ftp://hugo:nono@oscat.de:1234/download/manual.html
mailto:passwort@domain
mailto:passwort@domain
mailto:passwort@domain

Chapter 9. Network and Communication

9. Network and Communication

9.1. DNS _CLIENT

Type Function module
IN_ OUT IP_C: IP_C (parameterization)
S BUF: NETWORK BUFFER (transmit data)
R _BUF: NETWORK_BUFFER (receive data)
INPUT ACTIVATE: BOOL (Query start by positive edge)
DOMAIN: STRING (Domain name or IP as String)
IP4_DNS: DWORD (IPv4 address of the DNS server)
OUTPUT IP4: DWORD (IPv4 address of the requested domain)
DONE: BOOL (IP of the domain has been queried successfully)
ERROR: DWORD (error code)

s
DMS_CLIEMT

—ACTIVATE IPd—
—DOMAIN DOMNE
—IP4_DME ERROR—
—IP_C & FIP_C
—5_BLUF & = S_BUF
—F_BUF F ~R_BLF

DNS_CLIENT determine from the given qualified DOMAIN name the
associated IPv4 address eg "www.oscat.de" . For this purpose, a DNS
query to a DNS server for configured DOMAIN name with is made. With
positive edge of ACTIVATE the specified DOMAIN is stored so that they no
longer must be present. If the query provide more IP addresses, so always
he highest value of the TTL (Time To Live) is used. As IP4 DNS can be used
any public DNS servers. If the PLC is sitting behind a DSL router, this
router can be used through its gateway address as a DNS server. Which
ultimately leads to faster even with repeated requests response times
because they are managed in the router cache. With positive results DONE
= TRUE the IP4 contains the requested IP address until the start of the
next query by positive edge of ACTIVATE. If in the DOMAIN name a valid
IPv4 address is detected, no more DNS query is made and it is passed in
converted type to IPv4 and DONE is set to TRUE. ERROR gives, if an error
occurs, the exact cause.

89

Version 1.21

http://www.oscat.de/

Chapter 9.

Network and Communication

Error Codes:

Value

Source

Description

B3 /B2 |B1|B0

nn NN nn | Xxx

IP_CONTROL

Error from module IP_CONTROL

XX | xXx [xx |00

DNS_CLIENT

No error: The request completed successfully

XX | xx |xx |01

DNS_CLIENT

Format error: The name server was unable to interpret the query.

XX | XX [xx |02

DNS_CLIENT

Server failure: The name server was unable to process this query
due to a problem with the nameserver.

XX | XX [xx |03

DNS_CLIENT

Name Error: Meaningful only for responses from an authoritative
name server, this code signifies that the domain name referenced in
the query does not exist

XX | XX |xx |04

DNS_CLIENT

Not Implemented: The name server does not support the requested
kind of query

XX | XX |xx |05

DNS_CLIENT

Refused: The name server refuses to perform the specified opera-
tion for policy reasons

XX | XX [xx |06

DNS_CLIENT

YXDomain: Name Exists when it should not

XX | Xx [xx |07

DNS_CLIENT

YXRRSet. RR: Set Exists when it should not

XX | Xx [xx |08

DNS_CLIENT

Nxrrset. RR: Set that should exist does not

XX | XX [xx |09

DNS_CLIENT

Server Not Authoritative for zone

XX | Xx | xx |0A

DNS_CLIENT

Name not contained in zone

XX | xx |xx |FF

DNS_CLIENT

No ip-address found

9.2.

Type
IN_ OUT

INPUT

DNS_REV_CLIENT

Function module

IP_C: IP_C (parameterization)

S BUF: NETWORK BUFFER (transmit data)
R_BUF: NETWORK BUFFER (receive data)
ACTIVATE: BOOL (query start by positive edge)

90

Version 1.21

Chapter 9. Network and Communication

DOMAIN: STRING (Domain name or IP as String)
IP4_DNS: DWORD (IPv4 address of the DNS server)
OUTPUT IP4: DWORD (IPv4 address of the requested domain)
DONE: BOOL (IP of the domain has been queried successfully)
ERROR: DWORD (error code)

»r?

DN5_REV_CLIENT
—{ACTIVATE DOMATN{—
—{1r4 DONE —
—{Ir4 DN3 ERROR|—
I > B IP_C
—{s BUF & 5 BUF
—{r_BUF - B_EUF

DNS_REV_CLIENT determine from the given IP address the officially
registered domain name. For this purpose a reverse DNS query on the
configured IP address with a DNS server is made. With positive edge of
ACTIVATE the specified IP is stored so that they no longer must be present.
If the query result in more matches, it will always use the last record. As
IP4 DNS can be used any public DNS servers. If the PLC is sitting behind a
DSL router, this router can be used as a DNS server through its gateway
address. Which ultimately leads to faster even with repeated requests
response times because they are managed in the router cache. With
positive results DONE = TRUE the DOMAIN contains the officially
registered domain name until the start of the next query by positive edge
of ACTIVATE. ERROR gives ao error, the error code. (See error codes).

Error Codes:

Value Source Description

B3 |B2|B1|B0O

nn |nn |nn|xx |IP_CONTROL | Error from module IP_CONTROL

xx |xx |xx |00 | DNS_CLIENT |No error: The request completed successfully

xx |xx |xx |01 |DNS_CLIENT |Format error: The name server was unable to interpret the query.

xX |xx |xx |02 |[DNS_CLIENT | Server failure: The name server was unable to process this query
due to a problem with the nameserver.

xX | XX |xx |03 |DNS_CLIENT |Name Error: Meaningful only for responses from an authoritative

91

Version 1.21

Chapter 9.

Network and Communication

name server, this code signifies that the domain name referenced in
the query does not exist

XX

XX

XX

04

DNS_CLIENT

Not Implemented: The name server does not support the requested
kind of query

XX

XX

XX

05

DNS_CLIENT

Refused: The name server refuses to perform the specified opera-
tion for policy reasons

XX

XX

XX

06

DNS_CLIENT

YXDomain: Name Exists when it should not

XX

XX

XX

07

DNS_CLIENT

YXRRSet. RR: Set Exists when it should not

XX

XX

XX

08

DNS_CLIENT

Nxrrset. RR: Set that should exist does not

XX

XX

XX

09

DNS_CLIENT

Server Not Authoritative for zone

XX

XX

XX

0A

DNS_CLIENT

Name not contained in zone

9.3.

Type

INPUT

DNS_DYN

OUTPUT

IN_OUT

Function module

ENABLE: BOOL (release of the module)

UPDATE: BOOL (Launches new DNS registration immediately)
T _UPDATE: TIME (waiting time for new DNS registration)
MODE: BYTE (selection of DynDNS provider)

HOST NAME: STRING (30) (own domain name)

USER NAME: STRING(20) (name for registration)

PASSWORD:

STRING(20) (password for registration)

IP4: DWORD (Optional specify the IP address)

BUSY: BOOL (module is active, query is performed)
DONE: BOOL (performed DNS registration successful)
ERROR_C: DWORD (error code)

ERROR_T: BYTE (error type)

IP_C: IP_C (parameterization)

S BUF: NETWORK BUFFER (transmit data)

R _BUF: NETWORK_BUFFER (receive data)

92

Version 1.21

Chapter 9. Network and Communication

#o7

DN5_DYN

—{ENAELE BUSYTH—
—{UPDATE DONE|—
—|T UPDATE ERROR_C|-
—{MODE ERROR_T|
—{HOSTHANE B IP C

USERNANE > §_BUF
PASSTORD > R_BUF
—{1r4

JIp C ™

—{s BUF &

—{r BUF

WIth DNS_DYN dynamic IP addresses are registered as domain names.
Many Internet providers assign a dynamic IP address when dialing into the
Internet. To be visible and accessible for Internet Participants, one of the
ways is to upgrade its current IP address via Dyn-DNS. The process is not
standardized, unfortunately, so for every Dyn-DNS provider has to be
created a individual solution. The module can be used in conjunction with
DynDNS.org and Selfhost.de. These providers offer in addition to paid also
free DynDNS services.

If ENABLE is set to TRUE, then the module is active. Using a positive edge
to UPDATE any time an update can be started. If at T UPDATE a time is
specified, always an update is done after that time.

Caution, most DynDNS providers rates a frequent or unnecessary update
as an attack, and block the account for a certain time.

The time T_UPDATE should not be set below an hour. If the parameter
T _UPDATE is not connect it is assumed as an update time of 1 hour. If no
update is needed on time, then T#0ms should be passed.

The MODE parameter allows the selection of DynDNS Provider
(0 = DynDNS.org, 1 = SELFHOST.DE)

The own domain name must be passed by the hostname. For security
reasons, USERNAME and PASSWORD as authorization data must be
specified to the DynDNS provider. If the parameter IP4 is not used, so
DynDNS provider automatically adopts the current registration-IP as WAN
IP with which the update is performed. By specifying an IP address also an
individual IP address may be assigned.

With flawless execution the parameter DONE = TRUE, else ERROR _C and
ERROR T passes the error code and error type. (See error codes).

ERROR T:

Value |Properties

93

Version 1.21

Chapter 9. Network and Communication

1 The exact meaning of ERROR_C can be read at module DNS_CLIENT
2 The exact meaning of ERROR_C can be read at module HTTP_GET
3 The DynDNS provider has refused registration

9.4. FTP_CLIENT

Type Function module:
INPUT ACTIVATE: BOOL (positive edge starts the query)
FILE NAME: STRING (file path/ filename)
FTP_URL: STRING(STRING_LENGTH) (FTP access path)
FTP_DOWNLOAD : BOOL (UPLOAD = 0 / DOWNLOAD = 1)
FTP_ACTIV : BOOL (PASSIV = 0/ ACTIV = 1)
FILE_ DELETE: BOOL (delete files after transfer)
TIMEOUT: TIME (time)
Dns_ip4: DWORD (IP4 address of the DNS server)
Dns_ip4: DWORD (IP4 address of the DNS server)
OUTPUT DONE: BOOL (Transfer completed without error)
BUSY: BOOL (Transfer active)
ERROR_C: DWORD (Error code)
ERROR _T: BYTE (Problem type)
777
FTP_CLIENT
ACTIVATE DOMNER
FILEMNAME BUSY—
~FTP_URL ERROR_C-
FTF_DOWNLOAD ERROR_TH
FTP_ACTRY
FILE_DELETE
TIMEQUT

OMNE_IP4
FLC P4

The module FTP_CLIENT is used to transfer files from the PLC to an FTP
server and to transmitted from the FTP server to the PLC. A positive edge

94

Version 1.21

Chapter 9. Network and Communication

at ACTIVATE starts the transfer process. In FTP_DOWNLOAD the
transmission direction can be specified. The parameter FTP_URL contains
the name of the FTP server and pass the optional user name and
password, an access path and an additional port number for the data
channel. If no username or password is passed, the module trys
automatically to register as "Anonymous" . The parameter FTP_ACTIV
determines whether the FTP server is operated in active or passive mode.
In the ACTIV mode, the FTP server tries to establish the data channel for
control, however these may cause problems by security software, firewall,
etc. because these could block the connection request. For this purpose, in
the firewall a corresponding exception rule has to be defined. In the
passive mode, this problem is alleviated since the controller establishes
the connection, and can easily pass through the firewall. The control
channel is always set up on port 20, and the data channel via standard
PORT21, but this is in turn is depending whether active or passive mode is
used, or optional PORT number in the FTP-URL is specified. With the
parameter FILE DELETE can be determined whether the source file should
be deleted after successful transfer. This works on FTP and even on the
control side. In specifying FTP directories the behavior depends on FTP
server, whether they exist in this case or are created automatically.
Normally, these should be already available. The size of files is no limit per
se, but there are practical limits: Space on PLC, FTP storage and the
transmission time. With dns_ip4 the IP address of the DNS server must be
specified, if in the FTP URL a DNS name is given, alternatively, an IP
address can be entered in the FTP URL. At parameters PLC_IP4 the own IP
addresses has to be supplied. If errors occur during transmission these are
passed to the output ERROR_C and ERROR T. As long as the transfer is
running, BUSY = TRUE, and after an error-free completion of the operation,
DONE = TRUE. Once a new transfer is started, DONE, ERROR T and
ERROR_C are reseted.

The module has integrated the IP._ CONTROL and must not be externally
linked to this, as it by default would be necessary.

Background: http://de.wikipedia.org/wiki/File_Transfer Protocol

URL examples:
ftp://username:password@servername:portnummer/directory/
ftp://username:password@servername
ftp://username:password @ servername / directory /
ftp://servername
ftp://username:password@192.168.1.1/directory/
ftp://192.168.1.1

95

Version 1.21

http://de.wikipedia.org/wiki/File_Transfer_Protocol

Chapter 9. Network and Communication

ERROR_T:
Value |Properties
1 Problem: DNS_CLIENT

The exact meaning of ERROR_C can be read at module DNS_CLIENT
2 Problem: FTP control channel

The exact meaning of ERROR_C can be read at module IP_CONTROL
3 Problem: FTP data channel

The exact meaning of ERROR_C can be read at module IP_CONTROL
4 Problem: FILE_SERVER

The exact meaning of ERROR_C can be read at block FILE_SERVER
5 Problem: END - TIMEOUT

ERROR_C contains the left WORD of the step number, and the right WORD has the re-
sponse code received by the FTP server.

The parameters must be considered first as a HEX value, divided into two WORDS, and
then be considered as a decimal value.

Example:

ERROR_T=5

ERROR_C = 0x0028_00DC
End-step number 0x0028 = 40
Response-Code 0x00DC = 220

9.5. GET_WAN_IP

Type
IN_ OUT

INPUT

OUTPUT:

Function module:

IP_C: data structure 'lP_CONTROL ' (Parameterization)

S BUF: data structure NETWORK BUFFER ‘(transmit data)
R_BUF: data structure 'NETWORK BUFFER ‘(receive data)
ACTIVATE: BOOL (release for query)

WAN_IP: DWORD (Wide Area Network address)

DONE: BOOL (Query completed without errors)
ERROR_C: DWORD (Error code)

96

Version 1.21

Chapter 9.

Network and Communication

ERROR_T: BYTE (error type)

e

GET_WAN_IP
—{asTIvaTE WEAN_IP
P cre DONER
s BUF & ERROR_C
—r BUF & ERROR_TH—
B IP_G
& 5_RALF
> R_BUF

The module determines the IP address that the Internet router on the Wide
Area Network (Internet) uses. This IP address is necessary for example to
to make DynDNS declarations. With a positive edge of the ACTIVATE the
request is started. After successful completion of the query DONE = TRUE,
and the parameters WAN_IP the current WAN IP address displayed. If an

error occurs during the query it is reported in ERROR_C in combination
with ERROR _T.

ERRO

RT:

Value

Properties

1

The exact meaning of ERROR_C can be read at module DNS_CLIENT

2

The exact meaning of ERROR_C can be read at module HTTP_GET

WEB-Se

LAN-IP: 192.168.178.1

WORKSTATION

LAN-IP: 192.1

SPS
rver

LAN-1P: 192.168.178.3

LAN-IP: GATEWAY
192.168.178.254

Firewall
I w Router

68.178.2 WAN-IP: 80.10.54.13

8 INTERNET
(Wide-Area-Network)

0 g 0o

3

97

Version 1.21

Chapter 9. Network and Communication

9.6. HTTP_GET

Type Function module:
IN_ OUT URL_DATA: URL (data STRING _TO_URL)
IP_C: IP_C (parameterization)
S BUF: NETWORK BUFFER (transmit data)
R_BUF: NETWORK_ BUFFER (receive data)
INPUT IP4: DWORD (IP address of the HTTP server)
GET: BOOL (Starts the HTTP query)
MODE: BYTE (version of the HTTP GET query)
UNLOCK BUF: BOOL (release of the receive data buffer)
OUTPUT HTTP_STATUS: STRING (HTTP status code)
HTTP_START: UINT (start position of the message header)
HTTP_STOP: UINT (stop position of the message header)
BODY START: UINT (start position of the message body)
BODY _STOP: UINT (stop position of the message body)
DONE: BOOL (task performed without error)
ERROR: DWORD (error code)

e
HTTP_GET

—{ir4 HTTP_STATUSH
—{GET HEADER_STARTH
—{MoDE HEADER_STOP|
—{UrLOCK_BUF BODY_STARTH
—URL_DATA & BODY_STOP-
P e DOMNE
{5 _BUF = ERROR|

—R_BUF & e URL_DATA

BIP_C

» 5_BUF

> R_BUF

HTTP_GET does at positive edge of Get a GET-command on an HTTP ser-
ver. IWith MODE the HTTP protocol version can be specified. The reques-
ted URL (web link) must be submitted completely processed in the
URL_DATA structure. The full URL should therefore be processed before the
module call by "STRING _TO_URL. After a successful query DONE = TRUE,
and the parameters HTTP_START and HTTP_STOP point to the data area in
which the message header data for further processing and evaluation are
to be found. Normally, a message body is present, which in turn is trans-

98

Version 1.21

Chapter 9. Network and Communication

mitted via BODY_START and BODY_STOP. Also, on HTTP_STATUS is reported
the HTTP status code as a string. One of the difficulties in receiving the
HTTP data is the end of the data stream. This module pursued multiple
strategies. In the process of the HTTP/1.0 the end of receiving data is de-
tected by disconnection of the host. Furthermore, always the information
in the header "Content-Length" is checked, and with this can be clearly re-
cognized, that all data is received. If none of the previous versions is true,
so a simple Receive Timeout Error detectes the end of data transmission.
The only downside is, that this takes time. Sometimes, depending on the
timeout value longer than desired. Therefore it is not bad if a reasonable
timeout value is set at IP. CONTROL. ERROR gives at errors, the exact cau-
se (See module IP_CONTROL)

The following MODE can be used:

Mode |Protocol Version Properties

0 HTTP/1.0 The host terminates automatically the TCP connection, after the trans-
fer of data.
1 HTTP/1.0 By applying "Connection: Keep-Alive", the host is instructed to use a

persistent connection. The client should end of the connection after
stopping activities.

2 HTTP/1.1 The host uses a persistent connection and must be stopped by client.

3 HTTP/1.1 By use of "Connection: Close" the host is instructed to stop transmissi-
on of data, the TCP connection.

9.7. IP2GEO

Type Function module:

IN_OUT IP_C: IP_C (parameterization)
S BUF: NETWORK BUFFER (transmit data)
R_BUF: NETWORK BUFFER (receive data)
GEO: IP2GEO (Geographic Data)

99

Version 1.21

Chapter 9.

Network and Communication

INPUT ACTIVATE: BOOL (release for query)
OUTPUT BUSY: BOOL (Query is active)
DONE: BOOL (Query completed without errors)
ERROR_C: DWORD (Error code)
ERROR_T: BYTE (error type)
Y
IP2GEDQ
—{IP BUSYH
—|ACTIVATE DOME—
P _Ce ERROR_CH
—{S_BUF = ERROR_TH—
—R_BUF = EIP_C
—GEOQ & F5_BUF
= R_BUF
FGEQ

The device supplies because of the wide-area network IP address, the
geographic information of the Internet access. As the WAN IP addresses
are registered worldwide, therefore can be determined the approximate
geographical position of the PLC. Should access runs through a proxy
server, so its geographic position is determined and not the PLC. Usually,
but normally it is in the nearness of the PLC, and thus the deviation is not
relevant. This results in calculated positions differ only a few miles from
the true position, and is relatively accurate.

If the parameter "IP" specifies no IP address, automatically the current
WAN IP is used, otherwise the information of the configured IP delivered.
With a positive edge of the ACTIVATE the request is started. As long as the
query is not complete, BUSY = TRUE is passed. After successful completion
of the query DONE = TRUE, and the parameters WAN_IP the current WAN
IP address displayed. If an error occurs during the query it is reported in
ERROR_C in combination with ERROR _T.

ERROR_T:

Value |Properties

1 The exact meaning of ERROR_C can be read at module DNS_CLIENT

2 The exact meaning of ERROR_C can be read at module HTTP_GET

The "country code is coded according to ISO 3166 country code ALPHA-2".

http://www.iso.org/iso/english_country names_and_code_elements
http://de.wikipedia.org/wiki/ISO-3166-1-Kodierliste

100

Version 1.21

http://de.wikipedia.org/wiki/ISO-3166-1-Kodierliste
http://www.iso.org/iso/english_country_names_and_code_elements

Chapter 9. Network and Communication

The "REGION_CODE" is coded to "FIPS region code".
http://en.wikipedia.org/wiki/List_of FIPS_region_codes

9.8. IP_CONTROL

Type Function module

IN_OUT IP_C : IP_C (parameterization)
S BUF: NETWORK BUFFER (transmit data)
R_BUF: NETWORK BUFFER (receive data)

INPUT IP: DWORD (encoded IP address as the default)
PORT: WORD (port number of the IP address)
TIME_OUT: TIME (monitoring time)

e

IF CONTROL

—1F b IP G
—FORT b S BUF
—|TINE oUT b R_BUF
H1r _Ck

3 BUF &

R EBUF &

Available platforms and related dependencies

CoDeSys:
requires the library "SysLibSockets.lib"
Runs on

WAGO 750-841
CoDeSys SP PLCWINNT V2.4

and compatible platforms

PCWORX:
No library required
Runs on all controllers with file system from firmware >= 3.5x

BECKHOFF:

101

Version 1.21

http://en.wikipedia.org/wiki/List_of_FIPS_region_codes

Chapter 9. Network and Communication

Requires the installation of "TwinCAT TCP/IP Connection Server"
Thus requires the Library "Tcplp.Lib"
(Standard.lib; TcBase.Lib; TcSystem.Lib are then automatically included)

Programming environment:
NT4, W2K, XP, Xpe;
TwinCAT system version 2.8 or higher;
TwinCAT Installation Level: TwinCAT PLC or higher;
Target platform:
TwinCAT PLC runtime system version 2.8 or higher.
PC or CX (x86)
TwinCAT TCP/IP Connection Server v1.0.0.0 or higher;
NT4, W2K, XP, XPe, CE (image v1.75 or higher);

CX (ARM)
TwinCAT TCP/IP Connection Server v1.0.0.44 or higher;
CE (image V2.13 or later);

The IP_CONTROL enables manufacturers and platform-neutral use of
Ethernet communications. In order to unite the many different interfaces
of the PLC-companies that IP._ CONTROL is used as an adapter "wrapper" .
This module UDP and TCP as well as active and passive connections can
be handled. As in some small controls the number of simultaneous open
sockets is very limited, so this module also supports the sharing of
sockets. An integrated automatic coordination of requests allows to divide
a socket to a number of client devices. Here is automatically recognized
whether a client uses a different connection parameters than its
predecessor. An existing connection is automatically terminated, and
established with the new connection parameters . The type of connection
can be set with C_MODE (see table). With C_PORT the desired port number
is given, and by the C_IP the IP v4 address. With C_STATE can be
determined whether the connection is established - closed, resp. the
negative and positive edge on change of state. C_ENABLE agent will
release the connection (establish) or close (removed). The send and
receive data works independently of each another, which means it is also
possible to send and receive asynchronous such as Telnet. In applications
which only send data and no data receive is expected R_OBSERVE must be
FALSE, so that no Timeout at receive occurs. At the start of transmit and
receive activities TIME_RESET is set by the user a to TRUE once, so that all
timeout start over with a defined start value. This is required due to the
Sharing functionality, because established connections remains connected
and the access rights are passed here only. The parameter IP serves as a
possible default IP address. To avoid repeating the same IP address
parameters, a Default - IP can be used. One possible use would be to
specify the DNS server address. When the module recognizes as C_IP the
IP 0.0.0.0, it automatically uses the default IP address. The same behavior

102

Version 1.21

Chapter 9. Network and Communication

00:

is at the Port parameter. If at the port C_PORT a 0 is detected so the
parameterized block port number of the module is used. The error code
ERROR consists of several parts (see table ERROR). With TIMEOUT the
overall monitoring time can be specified. This time value is independently
used used for connection, send data and receive data. The transferred
TIMEOUT value is automatically limited to 200 ms minimum. Thus, this
parameter can remain free.

The data block is automatically sent if in a shared connection in the send
buffer the transmit data and data length are entered. For data reveice, the
data is appended to the already existing data in the buffer. By setting SIZE
= 0, the receive data pointer is reset and the next received data is then
stored at position 0.

The module supports the blocking of data messages, that means the

S BUF resp. R_BUF can be arbitrarily large. Individual received data frames
are collected in R_BUF in stream form. Just the same when process data
are sent. The data in S_BUF is sent individually as Stream allowed block
size.

Application example:

CASE state OF

(* On Wait for release *)

IF RELEASE THEN

state := 10;

IP STATE: = 1; (* Sign on *)

END IF;

10:

(* Wait for clearance to access for connection and sending content *)

IF IP STATE = 3 THEN (* access permitted? *)

(* IP set up data traffic *)

IP C.C PORT: = 123; (* enter port number *)

IP C.C_IP = IP4; (* Enter IP *)

IP C.C MODE:= 1; (* Mode: UDP+ACTIVE+Port+IP *)

IP C.C ENABLE:= TRUE; (* Release connection ¥*)

IP C.TIME RESET: = TRUE; (Reset time monitoring * ¥*)
IP C.R OBSERVE: = TRUE; (* Monitor data receive ¥*)

R BUF.SIZE:= 0; (* Reset Home length ¥*)

(* Send data register *)

S BUF.BUFFER[0] := BYTE#1l6#1B;
(* Etc. ... *)
S BUF.SIZE: = xx; (* enter send length *)

103

Version 1.21

Chapter 9. Network and Communication

state := 30;
30:
IF IP C.ERROR <> 0 THEN
(* Perform error analysis *)
ELSIF S BUF.SIZE = 0 AND R BUF.SIZE >= xxx THEN

(* evaluate received data *)

(* Logout - release access for other *)
IP STATE := BYTE#4;
state: = 0 0; (* process end *)
END IF;
END CASE;

(* IP_FIFO call cyclic *)

IP FIFO(FIFO:=IP C.FIFO,STATE:=IP STATE,ID:=IP 1ID);
IP C.FIFO:=IP FIFO.FIFO;

IP STATE := IP FIFO.STATE;

IP ID:=IP FIFO.ID;

following C_ MODE may be used:

TYP |TCP/ UDP | Aktiv / Passiv | Port number required IP address required

E

0 TCP Active Yes Yes

1 UDP Active Yes Yes

2 TCP Passive Yes Yes (Address of the active part-
ner)

3 UDP Passive Yes Yes (Address of the active part-
ner)

4 TCP Passive Yes No (Any active partner will be ac-
cepted)

5 UDP Passive Yes No (Any active partner will be ac-
cepted)

C_STATE:

Value |State Message

0 connection is down

104

Version 1.21

Chapter 9. Network and Communication
1 Connection has been broken down (negative edge) value exists only for one cycle, then re-
turns 0.

254 Connection is established (positive edge) value exists for one cycle, then returns 255.

255 Connection is established

<127 |query if connections is established

>127 | query if connection is established

ERROR:

DWORD Message Type Description

B3 |B2|B1 B0

00 |xx |xx |xx |Connection establish Value 00 - No errors found

nn |xx |xx |xx |Connection establish Value 01-252 system-specific error

FD | xx |xx |xx |Connection establish Value 253 - Connection closed by remote

FF |xx |xx |xx |Connection establish value 255 - Timeout Error

xx |00 |xx |xx |Send data Value 00 - No errors found

XX |nn|xx |xx |Send data Value 01-252 system-specific error

xx |FF|xx |xx |Send data value 255 - Timeout Error

xx |xx |00 |xx |Receive data Value 00 - No errors found

XX |XX |nn |xx |Receive data Value 01-252 system-specific error

xx |xx |FF |xx |Receive data value 255 - Timeout Error

xx |xx |FE |xx |Receive data Value 254 - Receive buffer is full (overflow)
(Buffer size is automatically set to 0)

XX |XX |xX |nn |Application- Error In IP_CONTROL always 00
ERROR is transferred originally from the client appli-
cation and optionally, at this point an application error
is reported. This error code is entered, but only by the
client devices.

System-specific error: (PCWorx / MULTIPROG)

Value

State Message

0x00

No error occurred.

105

Version 1.21

Chapter 9. Network and Communication

0x01 Creation of at least one task has failed.

0x02 Initialization of the socket interface failed (only WinNT).

0x03 Dynamic memory could not be reserved.

0x04 FB can not be initialized because at start the asynchronous communication tasks, an error
has occurred.

0x10 | Socket initialization failed.

0x11 Error at sending a message.

0x12 Error when receiving a message.

0x13 Unknown service code in the message header.

0x21 Invalid state transition upon connection.

0x30 No more free channels available.

0x31 The connection was canceled.

0x33 General timeout, receiver or transmitter does not answer or sender has not completed
transmission.

0x34 Connection request has been negatively acknowledged.

0x35 Recipient did not confirm transfer, possibly overloaded receivers (repeat transfer).

0x40 Partner-string is too long (255 characters max).

0x41 The specified IP address is not valid or could not be interpreted correctly.

0x42 not valid port number.

0x45 Unknown parameters to input "PARTNER".

0x50 | Transmission attempt on invalid connection (sender or receiver).

0x53 All available connections are occupied.

0x61 Neg. confirmation of the recipient. It was used an incorrect sequence number.

0x62 Data type of transmitter and receiver are not equal.

0x63 Receiver is at the moment not ready to receive (poss. Cause: The recipient is disabled or is
currently in the data transfer (NDR = TRUE).

0x64 | Can not find a receiver module with the corresponding R_ID.

0x65 | Another module instance is already working on this connection.

0x70 Partner control was not configured as a time server.

106

Version 1.21

Chapter 9.

Network and Communication

System-specific error: (CoDeSys)

0x00

No error occurred.

0x01

SysSockCreate unsuccessful

0x02

SysSockBind unsuccessful

0x03

SysSockListen unsuccessful

System-specific error: (Beckhoff)

0x00

No error occurred.

0x01

SocketUdpCreate unsuccessful

0x03

socket listen unsuccessful

0x04

SocketAccept unsuccessful

9.9

Type

. IP_CONTROL2

Function module

IN. OUT IP_C:IP_C (parameterization)

S_BUF: NETWORK_BUFFER_SHORT (transmit data)
R_BUF: NETWORK_BUFFER_SHORT (receive data)

INPUT IP: DWORD (encoded IP address as the default)

PORT: WORD (port number of the IP address)
TIME_OUT: TIME (monitoring time)

Faas

IP_CONTROLZ
P FIP_C
—PoRT »S_AUF
—TIME_OUT = R_BUF
Hdr ce

{5 _BUF &

—R_BUF &

Available platforms and related dependencies

(See

module IP_CONTROL)

107

Version 1.21

Chapter 9. Network and Communication

The block has basically the same functionality as IP. CONTROL. However
S BUF and R_BUF are of type 'NETWORK BUFFER_SHORT"
(See general description IP_CONTROL).

It is no blocking of the data supported by IP. CONTROL2 . The maximum
data size for transmission and reception depends on the hardware
platform and is in the range of < 1500 bytes. This module can always be
used when no data stream mode is needed. The primary advantage is that
less buffer memory is required, and data will not be copied between
internal and external data buffer. Thus, the module is more economical
with respect to memory consumption and system load.

9.10. IP_FIFO

Type Function module:

IN_ OUT FIFO: IP_FIFO_DATA (IP-FIFO management data)
ID: BYTE (current ID assigned by IP_FIFO module)
STATE: BYTE (control commands and status messages)

108

Version 1.21

Chapter 9. Network and Communication

109 Version 1.21

Chapter 9. Network and Communication

777

IP_FIFO
—FIFQ & & FIFO
i = B 1D
—~STATE & P STATE

This module is used in combination with IP_ CONTROL for resource mana-
gement. This makes it possible that client applications request exclusive
access permissions and can also give back. By the FIFO is ensured that

each participant equally often gets the resource access assigned.

In the first call of the module automatically a new unique application ID is
assigned, which one the administration in FIFO is managed. The STATE pa-
rameter is changed by the application as well as from IP_FIFO module.
Each application may register by default only once in the FIFO.

STATE:

Value |State Message

0 no action

1 Privilege request

2 Privilege request has been accepted in FIFO
3 Privilege obtained (allowing resource access)
4 Privilege remove

5 Privilege was again removed from FIFO
Procedure:

1. application set the STATE to 1
2. Access permission are required as is the STATE = 2

3. if resource is free, and access rights are present, then
STATE=3

4. If the application has the resource resp. the access needs
not anymore the application sets STATE to 4. Thereafter
IP_FIFO releases the resource again and set STATE to O.

5. Process is repeated (same or other application)

Example is found in the module IP_CONTROL!

110

Version 1.21

Chapter 9. Network and Communication

9.11. LOG_MSG

Type Function module:
IN_ OUT LOG CL: LOG_CONTROL (log-data)

277
LOG_MSG

With LOG_MSG messages (STRINGS) are stored in a ring buffer. The
messages can be provided with additional parameters such as the front
color and back color for the output to TELNET and a filter by specifying an
entry-level news. Is the level of the message larger than the default log
level, the message is discarded. Furthermore,with Enable the logging will
be disabled in general. Thus, it is not a problem to archive many messages
per PLC cycle. The message buffer can be passed to a telnet client with
the module TELNET _LOG. Details on the interface are shown in the table
below.

If messages are applied from various module instances to the same
LOG_BUFFER, then the "LOG_CL" data structure has to be created Global.

9.12. LOG_VIEWPORT

Type Function module

IN_OUT LC: LOG_CONTROL
LV: us_LOG_VIEWPORT

27
LOG_WIEWRORT
—LC & B L
—Lv & B L

The module LOG_VIEWPORT is used to index a list of LOG_CONTROL
messages, which are currently in the virtual view. To move around within
the message list (scroll), a scroll offset can be specified by LV.MOVE_TO_X.
A positive value scroll in direction of newer reports and a negative value
in the direction of the earlier messages. The number of lines in the

1M1

Version 1.21

Chapter 9. Network and Communication

message list of the virtual view is given by LV.COUNT. The current
messages in the virtual view are stored in LV.LINE_ARRAY [x], and are
available for further processing. A change in the message list is always
announced with LV.UPDATE:= TRUE, and the user has to reset.

The following LV.MOVE_TO X values produce a special behavior.

+30000 = display previous Messages (beginning of the ring buffer)
+30001 = display latest messages (end of the ring buffer)

+30002 = one full page in direction of recent messages.

+30003 = One full page in direction of older messages

9.13. MB_CLIENT (OPEN MODBUS)

Type Function module:
IN_OUT IP_C: IP_C (parameterization)
S_BUF: NETWORK_BUFFER_SHORT (transmit data)
R_BUF: NETWORK_ BUFFER_SHORT (receive data)
DATA: ARRAY [0..255] OF WORD (MODBUS Register)
INPUT DATA_SIZE: INT (number of data words in structure MB_DATA)
ENABLE: BOOL (release)
UDP: BOOL (Prefix TCP / UDP, UDP = TRUE)
FC: INT (function number)
UNIT_ID: BYTE (Device ID)
R_ADDR: INT (Read command: MODBUS data point address)
R_POINTS: INT (Read command: MODBUS number of data

points)
R_DATA_ADR: INT (Read command: DATA data point address)
R_DATA_BITPOS: INT (read command: DATA data point bitpos.)
W_ADDR: INT (Read command: MODBUS data point address)
) W_POINTS: INT (Read command: MODBUS number of data
points

W _DATA ADR: INT (Read command: DATA data point address)

112

Version 1.21

Chapter 9. Network and Communication

W_DATA BITPOS: INT (read command: DATA data point bit pos.)
DELAY: TIME (repetition time)

OUTPUT ERROR: DWORD (error code)
BUSY: BOOL (module is active)

299
ME_CLIENT

DATA_SIZE ERROR|

ENABLE BUSY

LDP B IP_C

FC v S_BUF

LIRIT_ID » R_BUF

R_ADDR = DATA

R_POINTS

R_DATA_ADR

R_DATA_BITPOS

W _ADDR

W _POINTS

W _DATA_ADR

W _DATA_BITPOS

DELAY

P_CE

S_BUF &

R_BUF &

DATA &

The module provides access to Ethernet devices, the MODBUS TCP or
MODBUS UDP supported, or MODBUS RS232/485 devices are connected
via Ethernet Modbus gateway. There commands from Classes 0,1,2 are
supported. The parameters IP_C, S BUF, R_BUF this form the interface to
the module IP_CONTROL and used here for processing and coordination.
The desired IP address and port number (for MODBUS default is 502) must
be specified on IP_CONTROL centrally. The DATA structure is designed as a
WORD array and contains the MODBUS data for reading and writing. The
size of the WORD_ARRAY is given by DATA SIZE. By ENABLE, the module is
released, and by remove of the release a possibly still active query is
ended. For devices that support MODBUS with UDP = TRUE this mode can
be activated. The parameter UNIT_ID must only at use of Ethernet Modbus
provided. The desired function is specified by FC (see function code table).
Depending on the function, the R_xxx and W_xxx parameters has to be
supplied with data. By specifying the DELAY the repetition time can be
specified. If not specify the time an attempt is made as often as possible
to execute the command. The integrated access management
automatically guarantees to get the other module instances also to the
series. A negative command execution is reported by ERROR (see ERROR-
table). If the module actively performs a query, then BUSY = TRUE will be
passed during this time.

Supported function codes and parameters used:

113

Version 1.21

Chapter 9. Network and Communication
5
2
o 0
o |Z S w8
o
S ., & c s E .25
2 8 52 1P IPIEIP P,
g $E AHEEEEEE
g 2o 2 52 <|8|§|§|<Io-lolol
2@ 2 o -a ¥ ¢ ¢ x 333
1 |x Coils Read Coils X X |X [Xx
2 |x Input Discrete Read Discrete Inputs X X |X [x
3 x |Holding Register | Read Holding Registers X X |X
4 x |Input Register |Read Input Register X X
5 |x Coils Write Single Coil X X |X
6 x |Holding Register | Write Single Register X X
15 |x Coils Write Multiple Coils X |X |X |x
16 X | Holding Register | Write Multiple Register X |X |x
22 x |Holding Register | Mask Write Register X X
23 x | Holding Register | Read/Write Multiple Register |[x |[x |x X |X |X
ERROR:
Value Source Description
B3|B2|B1|B0
nn |nn |nn | xx |IP_CONTROL | Error from module IP_CONTROL
XX |xXx |xx [00 |[MB_CLIENT |No Error
xX [XX |xx |01 |MB_CLIENT |ILLEGAL FUNCTION:
The function code received in the query is not an allowable action
for the server (or slave). This may be because the function code is
only applicable to newer devices, and was not implemented in the
unit selected. It could also indicate that the server (or slave) is in the
wrong state to process a request of this type, for example because it
is unconfigured and is being asked to return register values.
XX |xx |xx |02 |[MB_CLIENT |ILLEGAL DATAADDRESS:
The data address received in the query is not an allowable address
for the server (or slave). More specifically, the combination of refer-
ence number and transfer length is invalid. For a controller with 100

114

Version 1.21

Chapter 9.

Network and Communication

registers, the PDU addresses the first register as 0, and the last one
as 99. If a request is submitted with a starting register address of 96
and a quantity of registers of 4, then this request will successfully
operate (address-wise at least) on registers 96, 97, 98, 99. If a re-
quest is submitted with a starting register address of 96 and a quan-
tity of registers of 5, then this request will fail with Exception Code
0x02 “lllegal Data Address” since it attempts to operate on registers
96, 97, 98, 99 and 100, and there is no register with address 100.

XX

XX

XX

03

MB_CLIENT

ILLEGAL DATA VALUE:

A value contained in the query data field is not an allowable value
for server (or slave). This indicates a fault in the structure of the re-
mainder of a complex request, such as that the implied length is in-
correct. It specifically does NOT mean that a data item submitted for
storage in a register has a value outside the expectation of the appli-
cation program, since the MODBUS protocol is unaware of the sig-
nificance of any particular value of any particular register.

XX

XX

XX

04

MB_CLIENT

SLAVE DEVICE FAILURE:

An unrecoverable error occurred while the server (or slave) was at-
tempting to perform the requested action.

XX

XX

XX

05

MB_CLIENT

ACKNOWLEDGE:

Specialized use in conjunction with programming commands. The
server (or slave) has accepted the request and is processing it, but
a long duration of time will be required to do so. This response is re-
turned to prevent a timeout error from occurring in the client (or
master). The client (or master) can next issue a Poll Program Com-
plete message to determine if processing is completed.

XX

XX

XX

06

MB_CLIENT

SLAVE DEVICE BUSY:

Specialized use in conjunction with programming commands. The
server (or slave) is engaged in processing a long—duration program
command. The client (or master) should retransmit the message
later when the server (or slave) is free.

XX

XX

XX

MB_CLIENT

MEMORY PARITY ERROR:

Specialized use in conjunction with function codes 20 and
21 and reference type 6, to indicate that the extended file area
failed to pass a consistency check.The server (or slave) attempted
to read record file, but detected a parity error in the memory.The
client (or master) can retry the request, but service may be required
on the server (or slave) device.

XX

XX

XX

0A

MB_CLIENT

GATEWAY PATH UNAVAILABLE:

Specialized use in conjunction with gateways, indicates that the
gateway was unable to allocate an internal communication path
from the input port to the output port for processing the request.
Usually means that the gateway is misconfigured or overloaded.

XX

XX

XX

0B

MB_CLIENT

GATEWAY TARGET DEVICE FAILED TO RESPOND:

Specialized use in conjunction with gateways, indicates that no re-
sponse was obtained from the target device. Usually means that the

115

Version 1.21

Chapter 9. Network and Communication

‘device is not present on the network.

9.14. MB_SERVER (OPEN-MODBUS)

Type Function module:

IN_ OUT IP_C: IP_C (parameterization)
S BUF: NETWORK BUFFER _SHORT (transmit data)
R_BUF: NETWORK BUFFER_SHORT (receive data)
VMAP: ARRAY [1..10] OF VMAP_DATA (virtual address table)
DATA: ARRAY [0..255] OF WORD (MODBUS Register)

INPUT DATA SIZE: INT (number of data words in DATA)
ENABLE: BOOL (release)
UDP: BOOL (Prefix TCP / UDP, UDP = TRUE)

OUTPUT ERROR: DWORD (error code)

ME SERVER

—DATA SIZE ERROR

—ENAELE b IP_C

—UDP & 5 EBUF

—IF C& + E_BUF

—% BUF b & VHAP

—E_EBUF b t DATA

—(VHMAP B

—DALTA &=

The module provides access from external to local MODBUS data tables via
Ethernet. It supports commands in categories 0,1,2. The parameters IP_C,
S_BUF, R_BUF this form the interface to the module IP_CONTROL and used
here for processing and coordination. The desired port number (for
MODBUS default is 502) must be specified on IP_CONTROL centrally. The IP
address is not required on IP_CONTROL, as this one operates in the
PASSIVE mode. The DATA structure is designed as a WORD array and
contains the MODBUS data. DATA SIZE specifies the size of DATA . By
ENABLE, the module is released, and by remove of the release a possibly
still active query is ended. For devices that support MODBUS with UDP =
TRUE this mode can be activated. A negative command execution is
reported by ERROR (see ERROR table).

WIth entries in the data structure VMAP, virtual data areas are created,
and the access to certain function codes and data regions is
parameterized. Thus, it is very easy to map virtual address spaces into a

116

Version 1.21

Chapter 9.

Network and Communication

coherent Data block (DATA), or write data areas. Or provide areas, that

are connected to output peripherals, with a watchdog.

The handling of the VMAP data is described in more detail in the module

MB_VMAP.
ERROR:

Value Source Description

B3 /B2 |B1|B0

nn | nn|nn|xx |IP_CONTROL | Error from module IP_CONTROL

XX

XX

XX

00 | MB_SERVER

NO ERROR:

XX

XX

XX

01 | MB_SERVER

ILLEGAL FUNCTION:

XX

XX

XX

02 | MB_SERVER

ILLEGAL DATAADDRESS:

XX

XX

XX

03 | MB_SERVER

ILLEGAL DATA VALUE:

Supported function codes and parameters used:

5

2

o

()

x
0 S
3 7
Ole & c6
c @ (3) o
0| 0o | < =2
AR g 2
S =2 g 5 8
il () “-a
1 |x Coils Read Coils
2 |x Input Discrete Read Discrete Inputs
3 x |Holding Register | Read Holding Registers
4 x |Input Register |Read Input Register
5 |x Coils Write Single Coil
6 x | Holding Register | Write Single Register

117

Version 1.21

Chapter 9. Network and Communication

15 |x Coils Write Multiple Coils

16 X | Holding Register | Write Multiple Register

22 x |Holding Register | Mask Write Register

23 x | Holding Register | Read/Write Multiple Register

9.15. MB_VMAP

Type Function module:
IN_ OUT VMAP : ARRAY [1..10] OF VMAP_DATA (VIRTUAL_MAP Data)
INPUT FC: INT (function number)

V_ADR: INT (virtual address range start address)

V_CNT: INT (Virtual address space: number of data points)

SIZE: INT (number of MODBUS registers in structure DATA)
OUTPUT: P_ADR: INT (Real address space: Start address)

P_BIT: INT (real address range: bit position)

ERROR: DWORD (error code)

299
WE_VhAP

e P_ADRE
—v_ADR P_BIT
—_CNT ERROR|
—{zizE B YMAP
—MAF =

The module allows the conversion of virtual addresses at a real address
space in the MODBUS DATA Structure. Virtual address ranges are defined
in the VMAP data array. If the module is called and found that nothing in
the VMAP data is entered, automatically a block is created, allowing full
access to all the MODBUS data. In each address block also a watchdog
timer is maintained that sets each time you access this block on the timer
to zero. Thus, simply by comparing the TIME_OUT value to a cutoff value,
at communication error (no update) can be responded.

By the parameter FC is detected the functional code and whether the
register (16 bit) or individual bits must be processed. The bit number
corresponds to the function code. This means that Bit5 = 1 in FC the
function code 5 (Write Single Coil) enables. By V_ADR by the virtual start
address is specified (At 16bit commands this is a register address and at

118

Version 1.21

Chapter 9. Network and Communication

bit commands an absolute bit number within a defined block.) The
parameter V_CNT defines the number of data points (unit 16-bit or bits
depending on the function code). The overall size is given by
MODBUS_ARRAY SIZE (number WORDS). By using these parameters, the
module searched the VMAP data table for a matching block of data, and
passes from the correct data block P_ADR as a result. The value
corresponds to the real index for MODBUS_DATA array. At a function code
with bit access in addition the bit position within P_ADR is passed as well.
A potential error occurring in the analysis is reported for the parameter
"error" (see error table). The watchdog timer is reseted at each access to a
function code from the group of write commands.

If no special treatment required, so in VMAP are not settings
required, and then MODBUS_ARRAY is mapped 1:1 with the

access.

ERROR:

Value Description

0 No error

1 Invalid function code
2 Invalid Data Address

! Note the special treatment of function code 23!

The Modbus Function Code 23 is a combined command, because it
consists of two actions. First register are written and then the register are
read. Found that the write or read parameter is not allowed, so neither of
these actions is performed.

To distinguish between reading and writing by VMAP, the read command is
checked in VMAP at FC 23 as BIT23 (Read/Write Multiple registers), and the
write command on the other hand, is tested in Bit16 (Write multiple
registers).

Example Configuration

(* Virtual block 1 *)
VMAP[1].FC := DWORD#2#00000000_ 10000000 _00000000_00011100); (FC 2,3,4,23)
VMAP[1].V_ADR := 1; (* Virtual Address Range: Start address *)

VMAP[1].V_SIZE := 4; (* Virtual address space: number of WORD ¥*)

119 Version 1.21

Chapter 9. Network and Communication

VMAP[1].P ADR := 1; (* Real address space: Start address *)

(* Virtual Block 2 *)

VMAP[2].FC := DWORD#2#00000000 10000000 00000000 00011000); (FC 3,4,23)
VMAP [2] V_ADR.

101; (* Virtual Address Range: Start address ¥*)
VMAP[2].V_SIZE := 4; (* Virtual address space: number of WORD ¥*)
VMAP[2].P ADR := 5; (* Real address space: Start address *)

(* Virtual Block 3 *)

VMAP[3].FC := DWORD#2#00000000 11000001 10000000 01111010); (FC1,3-6,15-16,23)

VMAP [3] V_ADR. = 201; (* Virtual Address Range: Start address ¥*)
VMAP[3].V_SIZE := 4; (* Virtual address space: number of WORD *)
VMAP[3].P ADR := 9; (* Real address space: Start address *)

(* Virtual Block 4 *)
VMAP[4].FC := DWORD#2#00000000 11000001 00000000 01011000); (FC 3,4,6,16,23)

VMAP [4] V_ADR. = 301; (* Virtual Address Range: Start address ¥*)
VMAP[4].V_SIZE := 4; (* Virtual address space: number of WORD *)
VMAP([4].P ADR := 12; (* Real address space: home address *)

SPS (MODBUS-Server)

MODBUS_DATA

Index 00

Index 01

Index 02

Index 03 Virtuelle Adressen

Index 04 VMAP

Tndex 05 DigHtal Inpit MODBUS-CLIENT
Index 06 Adresse 001-004

Index 07 — Modbus-Request
Index 08

Index 09 Digital Output ‘ Modbus-Confirmation
Index 10 Adresse 201-204

Index 11 Analog Output

Index 12 Adresse 301-304

Tndex 13

Index 14

Index 15

Index 16

Index .

The configuration is following access matrix:

120 Version 1.21

Chapter 9. Network and Communication

5
2
o
()
o |E 5
° 0 - |5 o
[} n o 3| a8 -
c ,E ‘é a § = g’ £ 8
g g8 I EEEE
S8 21 3 5 28
LA T m| A < <
Read Coils 1 |x Read X
Read Discrete Inputs 2 |x Read X
Read Holding Registers 3 x |Read X [x |x [x
Read Input Register 4 x |Read X |[x |x |X
Write Single Coil 5 |x Schreiben X
Write Single Register 6 X | Schreiben X |X
Write Multiple Coils 15 |x Schreiben X
Write Multiple Register 16 X | Schreiben X |x
Mask Write Register 22 x | Schreiben
Read/Write Multiple Register | 23 X |Read / Write X [x |x [x
9.16. PRINT_SF
Type Function module:

IN_ OUT PRINTF_DATA: ARRAY[1..11] OF STRING(string_length)
(Parameter data)

STR: STRING (String_length) (String result)

BN
PRINT SF
—PRINTF_DATA & = PRINTF_DATA
—{53TR & t 3TE

With PRINT_SF a STRING can be added dynamically with a part of a string.
The position of the substring to be inserted is indicated by '~' tilde
character and the subsequent number defines the parameter number. '~
1'to '~ 9' are thus processed automatically. If the insert of the substring

121

Version 1.21

Chapter 9. Network and Communication

reached the maximum number of characters, so instead of the substring

'.." is inserted.

VAR
LITER : REAL := 545.4;
FUELLZEIT : INT := 25;
NAME: STRING: = 'tank content';

PARA: ARRAY[1..11] OF STRING(string_length);

PS: PRINT SF;

END VAR

PARA[1]: = REAL TO STRING(liters); (* Parameter 1: string to convert *)
PARA[2]: = INT TO STRING(filling time); (* Parameter 2: string to convert
*)

PARA[3]: = NAME; (* Parameter 3: *)

PS.STR: = '~3: ~1 Lker,ﬁl“ng Unwe:~2IWinJ; (* Text output-mask *)
PS.PRINTF DATA := PARA; (* Pass parameter data structure *)

PS(); (* Module version *)

The string PS. STR then has the following content

9.17. READ_HTTP

Type Function module:
INPUT SIZE: UINT (Buffer size)
POS: INT (position as of that the search is started)
SRC: STRING (Search string)
IN_ OUT PT: POINTER (Address of the buffer)
(

OUTPUT VALUE Parameters of the header information)

e
READ_HTTF

—=1zE READ_HTTP—
—Fos e FT
—sRC

—FT R

After a successful HTTP-GET Request always a HTTP header (message
header) and a message body (message body) is available in the buffer. In
the HTTP header various information about the requested HTTP page is

122

Version 1.21

Chapter 9. Network and Communication

stored. The following message body contains the actual requested data.
With READ_HTTP the HTTP header information can be analyzed. The
module searches any array of bytes on the contents of a string and then
evaluates the following parameters, and returns that string as its result.
The data in the buffer are automatically converted to upper case, so all
search string at SRC has to be too, given in capital letters. With POS it can
begin its search at any position. The first element in the array is at position
number 1

Example of an HTTP response (header information):

HTTP/1.0 200 OK<CR><LF>

Content-Length: 2165<CR><LF>

Content-Type: text/html<CR><LF>

Date: Mon, 15 Sep 2008 16:59:08 GMT<CR><LF>
Last-Modified: Wed, 18 Jun 2008 12:35:52 GMT<CR><LF>
Mime-Version: 1.0<CR><LF><CR><LF>

If SRC does not include a search term, automatically the HTTP version and
the HTTP status code in the buffer is searched and evaluated. As a result,
according to the above example "1.0 200 OK" is returned. If SRC is in a
search term, this header information is searched in the buffer and the
value as a string eg 'Content-Length' = "2165" is returned.

9.18. SMTP_CLIENT

Type Function module:
IN_ OUT SERVER: STRING (URL of the SMTP server)
MAIL FROM: STRING (return address)
MAILTO: STRING (string_length) (recipient address)
SUBJECT: STRING (subject text)
SUBJECT: STRING (subject text)
FILES: STRING (string_length) (attached files)
INPUT ACTIVATE: BOOL (positive edge starts the query)
TIMEOUT: TIME (time)
DTI: DT (current date-time)

123

Version 1.21

Chapter 9. Network and Communication

DTI_OFFSET: INT (time zone offset from UTC)

Dns_ip4: DWORD (IP4 address of the DNS server)
OUTPUT DONE: BOOL (Transfer completed without error)

BUSY: BOOL (Transfer active)

ERROR_C: DWORD (Error code)

ERROR _T: BYTE (Problem type)

T

SMTP_CLIENT
JACTIVATE DONE|
TIMEOUT BUSYE:
DTl ERROR_C
—DTI_OFFSET ERROR_TH
—{DNS_IP4 > SERVER
SERVER & b MAILFROM
~MAILFROM & b MAILTO
AMAILTO & b SUBJECT
SUBJECT & b BODY
—BODY & b FILES
FILES &

The module SMTP_CLIENT is used to send of classic emails.

Following features are supported:

SMTP protocol

Extended SMTP protocol

Sending the subject line, text and content

Indication of email sender address (From:), including "Display Name"
Indication of the recipient (s) (To:)

Indication of carbon copy recipient (s) (Cc:)

Indication of blind copy recipient (s) (bc:)

Sending file (s) as an attachment

Authentication method: NO, PLAIN, LOGIN, CRAM-MD5
Specifying the port number

When positive edge at ACTIVATE the transfer process is started. The
SERVER parameter contains the name of the SMTP server and optionally
the user name and password and a port number. If you pass a user name
and password, the procedure is according to standard SMTP.

124

Version 1.21

Chapter 9. Network and Communication

SERVER: URL Examples:
username:password@smtp_server
username:password@smtp_server:portnumber
smtp_server

Special case:

If in the username is a '@' included this must be passed as '%' - character,
and is then automatically corrected by the module again.

By specifying user and password the Extend-SMTP is used, and
automatically the safest possible Authentication method is used. If
parameter is to specify the MAIL FROM sender address:

i.e. oscat@gmx.net

Optionally, an additional "Display Name" be added This is displayed the
email client automatically instead of the real return address. Therefore,
always an easily recognizable name to be used.

i.e.. oscat@gmx.net;Station 01

The email client shows as the sender then "Station_01". Thus, more
people will use the same email address but send a own "Alias".

At the MAILTO parameter can To, Cc, Bc be specified. The different groups
of recipients are specified by '#' as the separator in a list. Multiple
addresses within the same group are divided with the separator ;" . In
each group can be defined unlimited count of recipients, the only
limitation is the length of the mailto string.

To;To..#Cc;Cc...#Bc;Bc...

Examples.
ol@gmx.net;o2@gmx.net#ol@gmx.net#o02@gmx.net
defines two TO-addresses, one CC-address and a Bc-address

##02@gmx.net
defines only one BC-address.

With subject, a subject text will be specified, as well as with BODY an email
text content. The current Date / Time value must be definded at DTI, and
at DTI_OFFSET the correction value as an offset in minutes from UTC
(Universal Time). If the DTl in UTC time is passed, at DTI_OFFSET a 0 must
be passed.

125

Version 1.21

Chapter 9. Network and Communication

It can be sent files as attachment. The files must be passed in list form for
parameter FILES. Any number of files are given, only limitation is the
length of the file-strings, and the space of the e-mailbox (in practice 50-30
megabytes).

By an additional optional information of '#DEL# deleting the files can be
triggered on the controller after the successful transfer of files via email.
€g

FILES: 'logl.csv ; log2.csv ; #DEL# '

The two files are deleted after successful transfer.

The monitoring time can be specified with parameter TIMEOUT. At dns_ip4
must be specified the IP address of the DNS server, if in SERVER a DNS
name is specified. If errors occur during the transmission, they are passed
at ERROR_C and ERROR T. As long as the transfer is running, BUSY =
TRUE, and after an error-free completion of the operation, DONE = TRUE.
Once a new transfer is started, DONE, ERROR_T and ERROR_C are reseted.

The module has integrated the IP_ CONTROL and must not be externally
linked to this, as it by default would be necessary.

Basics:
http://de.wikipedia.org/wiki/SMTP-Auth
http://de.wikipedia.org/wiki/Simple_Mail_Transfer Protocol

ERROR_T:

Value |Properties

1 Problem: DNS_CLIENT
The exact meaning of ERROR_C can be read at module DNS_CLIENT

2 Problem: SMTP Channel
The exact meaning of ERROR_C can be read at module IP_CONTROL

4 Problem: FILE_SERVER
The exact meaning of ERROR_C can be read at block FILE_SERVER

5 Problem: END - TIMEOUT

ERROR_C contains the left WORD the end of the step number, and in the right WORD
the last response code received by the SMTP server.

The parameters must be considered first as a HEX value, divided into two WORDS, and
then be considered as a decimal value.

Example:
ERROR_T=5

126

Version 1.21

http://de.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
http://de.wikipedia.org/wiki/SMTP-Auth

Chapter 9. Network and Communication

ERROR_C = 0x0028_00FA
End-step number 0x0028 = 40
Response-Code 0x00DC = 250

9.19. SNTP_CLIENT

Type Function module:

IN_ OUT IP_C: IP_C (parameterization)
S_BUF: NETWORK_BUFFER (transmit data)
R_BUF: NETWORK_BUFFER (receive data)

INPUT IP4: DWORD (IP address of the SNTP server)
ACTIVATE: BOOL (Starts the query)

OUTPUT ERROR: DWORD (error code)
DONE_P: BOOL (positive edge finish without error)
UDT: DT (Date and time output as Universal Time)
XMS: INT (millisecond of Universal Time UDT)

Y

SNTP_GLIEMT
—iF4 ERROR—
—ACTIVATE DOME_PR
dF ce UDTH
-5 BUF & HMS—
—r BUF & v IP_C

»5_BUF

¥ R_BUF

The SNTP_CLIENT is used to synchronize local time with an SNTP server.
For this, the Simple Network Time Protocol is used which is designed to
provide a reliable time information over networks with variable packet
delay. The SNTP is technically completely identical with NTP, which here
means no differences. Therefore, all known SNTP and NTP server can be
used, whether it be on the local network or via the Internet. For IP4 a IP-
address of a SNTP / NTP server is specified. A positive edge at ACTIVATE
starts the query. The elapsed time between sending and receiving of the
time is measured and a time correction is calculated. Then, the received
time will be corrected by this value. Upon successful completion DONE_P is
one positive edge, and the current time is passed at UDT. On XMS the
associated fractional seconds as milliseconds are passed. The values of

127 Version 1.21

Chapter 9. Network and Communication

UDT and XMS are only valid when DONE_P = TRUE, since this is a static
time value, and is only used for setting of pulse-controlled time. ERROR
gives at error the exact cause (See block IP._ CONTROL).

9.20. SNTP_SERVER

Type Function module:
IN_OUT IP_C: IP_C (parameterization)
S BUF: NETWORK BUFFER (transmit data)
R_BUF: NETWORK BUFFER (receive data)
INPUT ENABLE: BOOL (Starts SNTP server)
STRATUM: BYTE (specify the hierarchical level or accuracy)
UDT: DT (Date and time input as Universal Time)
XMS: INT (millisecond of Universal Time UDT)

Y

SNTP_SERVER
—EMSBLE EIP_G
—{STRATUM = S_BUF
—upT > R_BIUF
—{xms

P ce

—{5_BUF »

—R_BUF &

The module provides the functionality of an SNTP (NTP) server. With
ENABLE = TRUE the module logs in at IP_CONTROL and waits for the
release of the resource, if it occupied by other subscribers for now. Then
the module is waiting for requests from other SNTP clients and answers it
with the current time of UDT and XMS. As long as ENABLE = TRUE, the
Ethernet access of this resource is permanently locked for other users
(Exclusive Access - due to passive UDP mode). SNTP uses a hierarchical
system of different strata. As stratum 0 is defined as the exact time
standard. The directly coupled systems, such as NTP, GPS or DCF77 time
signals are called Stratum 1.Each additional dependent unit causes an
additional time lag of 10-100ms and is designate with a higher number
(Stratum 2, Stratum 3 to 255). If no STRATUM is specified at the module,
STRATUM = 1 is used as a standard.

128 Version 1.21

Chapter 9. Network and Communication

((e)) ((9))

Atom- oder Funkuhr

Schicht (Stratum) 1

Schicht (Stratum) 2

Schicht (Stratum) 3

Schicht (Stratum) 4
Endanwender

If an SNTP client itself has a time with a higher stratum than an SNTP
server, the time of this is sometimes rejected because it is less accurate
than their own reference. It is therefore important to specify a logically
correct STRATUM. The module SNTP_CLIENT ignores deliberately the
STRATUM and synchronizes in each case with the SNTP server, because
pretty much everyone SNTP server as a more precise time than a PLC.

9.21. SPIDER_ACCESS

Type Function module:
IN_OUT IP_C: IP_C (parameterization)
S _BUF: NETWORK_BUFFER (transmit data)
R_BUF: NETWORK BUFFER (receive data)
VALUE: STRING (Value of the variable)
NAME: STRING(40) (Variable Name)
INPUT MODE: BYTE (operating mode: 1 = read / write = 2)
ERROR ERROR: DWORD (Error code)

129

Version 1.21

Chapter 9.

Network and Communication

s

MODE
P Ce
S_BUF &
F_BUF &
VALLIE &
VAR_MAME ©

SPIDER_ACCESS

ERROR
BIP_G

» 5_BUF

= R_BUF

B yALLIE

& YAR_MNAME

ERROR:

Value |Properties

1 At writing variable values an error occured.

>1 The exact meaning of ERROR is read at module HTTP_GET

With SPIDER_ACCESSvariables can be read wnd written from the PLC,
which are provided by visualizations of web servers based on "spider
control" from the company iniNet integrated Solution GmbH,

For the following PLC is this web server integration available:

Simatic S7 200/300/400
SAIA-Burgess PCD

Wago (750-841)

Beckhoff (CX series)
Phoenix Contact (ILC Reihe)
Selectron

Berthel

Tbox

Beck IPC

In the PLC program of target PLC, the desired variables must be released
for web access. Since the communication is performed via HTTP (port 80),
the data exchange is no problem, even across firewalls. Global and
instance variables can be processed.

Format of variables:

At global variables, only the regular variable names has to be given. An
instance variable must be specified below.
"instance name. variable name"

Mode: Read

If the MODE parameter is set to "1" and the variable name is quoted in
"NAME", so cyclically a request to the HTTP to Web Server (PLC) is
performed and the result is displayed the "VLAUE" as a string.

130 Version 1.21

Chapter 9. Network and Communication

Mode: Write

If the parameter MODE is set to "2" and at "VALUE" the variable value and
in "NAME" the variable name as string, then cyclically an HTTP request to
the Web Server (PLC) is performed

The mode resp. the variable name can be changed in the cyclic mode at
any time. If several variables have to be processed, thus only a many
module instances as needed must be called.

9.22. SYS LOG

Type Function module:

IN_ OUT IP_C: IP_C (parameterization)
S BUF: NETWORK BUFFER (transmit data)
R_BUF: NETWORK_BUFFER (receive data)

INPUT ACTIVATE: BOOL (positive edge starts the query)
LDT: DT (local time)
SERVER |IP4: DWORD (IP address of the syslog server)
PORT: WORD (Port number of the syslog server)
FACILITY: BYTE (specifies the service or component)
SEVERITY: BYTE (Classification of severity)
TAG: STRING(32) (Process name, ID, etc.)
HOST NAME: STRING (Name or IP address of the sender)
MESSAGE: STRING(string _length) (Message)
OPTION BYTE (Various)

OUTPUT DONE: BOOL (Query completed without errors)
ERROR: DWORD (Error code)

131 Version 1.21

Chapter 9. Network and Communication

297
5YS_LOG

—{sCTrvaTE DOME_PH
—LoT ERROR|
—|SERVER_IPY B IP_G
—PORT = 5_BUF
—FaciLimy > R_BIUF
—{SEVERITY

TG

—{HOSTHAME

—|MESSAGE

—HoPTION

dPr ce

—{5_BUF »

—r BUF &

SYSLOG is a standard for transmitting messages in an IP computer net-
work. The protocol is very simple - the client sends a short text message
to the syslog receiver. The receiver is also called "syslog daemon" or "sys-
log server". The messages are sent using UDP port 514 or TCP port 1468
and includes the message in plain text. SYSLOG is typical used for compu-
ter systems management and security surveillance. This enables the easy
integration of various log sources to a central syslog server. The server
software is available for all platforms, sometimes known as free / sharewa-
re. Unix or Linux systems have a syslog server already integrated.
Through a positive edge at ACTIVATE from the parameters of LDT, FACILI-
TY, SEVERITY, TAG, HOST NAME, MESSAGE a syslog message is generated
and sent to the SERVER_IP4 mail address. With OPTION various properties
can still be controlled (See Table OPTION). After successfully sending
DONE gets TRUE, otherwise ERROR is issued when the actual error messa-
ge (See ERROR of module IP_CONTROL).

A syslog message has the following structure
FACILITY,SEVERITY, TIMESTAMP,HOSTNAME,TAG,MESSAGE

Example:

MAIL.ERR: Sep 10 08:31:10 149.100.100.02 PLANT2 PLC1 This is a test
message generated by OSCAT SYSLOG

The following options can be used

BIT |Function

0 FALSE = with Facility, Severity code
TRUE = No Facility, Severity code

1 FALSE = with RFC header

TRUE = without RFC Header (only the MESSAGE alone sent)

132

Version 1.21

Chapter 9. Network and Communication
2 FALSE = with CR,LF at end
TRUE = without CR,LF end
3 FALSE = UDP Modus
TRUE = TCP Modus

Severity is defined as the following standard:

Severity |Description
0 Emergency
1 Alert
2 Critical
3 Error
4 Warning
5 Notice
6 Informational
7 Debug

The following facility is defined as standard:

Facility Description
00 Kernel message
01 user-level messages
02 mail system
03 system daemons
04 security/authorization messages
05 messages generated internally by syslogd
06 line printer subsystem
07 network news subsystem
08 UUCP subsystem
09 clock daemon
10 security/authorization messages
11 FTP daemon

133

Version 1.21

Chapter 9. Network and Communication

12 NTP subsystem
13 log audit

14 log alert

15 clock daemon
16 local10

17 local11

18 local12

19 local13

20 local14

21 local15

22 local16

23 local17

For general syslog messages, the facility values 16-23 are provided (local0
to local7). But it is quite permissible to use the predefined values from 0 to
15 for own purposes.

With Facility and Severity can be filtered on the SYSLOG server (database)
according to certain reports, such as: "Record all error messages from the
mail server with severity level.

Example (screenshot) of a syslog server for Windows

134

Version 1.21

Chapter 9.

Network and Communication

Kiwi Syslng S-ENICE Manaer

File Edit View Manage Help
iU @ A @ |Display 00 (Defaull ~|

' Date

06-05-2007
O 06-05-2007
1 06-05-2007

O 06-05-2007
@ 06-05-2007
@ 06-05-2007

g sl) B EE A I e e N e

[06-05-2007
[06-05-2007

Time Priority Hostname Messzage
14:45:24 Syslog.Info 192.165.10.49 Test user connected to website http://195.252.75.129/index.html
14:45:24 Daemondnfo 192168.10.80 Test user connected to website http://194.92.215.30/index.html
14:45:21 Local5.Debug 192.168.10.167 Test user connected to website http://214.130.1.235/index.himl

14:45:14 Local5.Debug 192168.10.87 Test user connected to website http://194.222,174. 211 /index.html
14:45:11 Locald.Debug 192.1658.10.115 Test user connected to website http://195.222.233 . 144/index.html
14:45:08 System0.Info 192,168.10.90 Test user connected to website http:/7204.43.103.32/index.hitml
14:45:07 SyslogInfo 192.168.10.49 Test user connected to website http://196.100.204.209/index.html
14:45:05 Daemon.nfo 192.1658.10.2 Test user connected to website http://208.63.230.162/index.html

14:44:59 Local?.Info 1921681046 Test user connected to website http://201.82.225.89/index.html
14:44:55 Systemﬂ Info 192,1658.10.58 Test user connected to website http://200.41.157.21 2/index.html

[+ 06-05-2007 192.168.10.2 | Test user connected to website http://215.195.130.207 /index.html

|'= 06-05-2007
€3 06-05-2007
& 06-05-2007
@ 06-05-2007
@ 06-05-2007
| 08-05-2007
¥ 06-05-2007
- 06-05-2007

14:44:51 Kernel.Motice 192,168.10.236 Test user connected to website hitp://217.32.63.83/index.html
14:44:43 Lpr.Error 192.168.10.181 Test user connected to website hitp://218.59.46.229/index.html
14:44:38 Systemd4.Debug 192.168.10.199 Test user connected to website http://214.46.27 .240/index.html
14:44:34 LocaldInfo 192,168.10.204 Test user connected to website http://202.234.139.1581 findex.html|
14:44:33 SysloglInfo 1921681033 Test user connected to website http://220.145.97 3/index. html
14:44:33 System(.Info 19216810107 Test user connected to website http://224.59.198.203/index. html
14:44:29 System2 Warning 192,168.10,193 Test user connected to website http://220.179.168.91/index.html|
14:44:24 Local2.Motice 192.168.10.1 Test user connected to website hitp://222.133.21.159/index.html|

100% 5858 MPH 1514 06-05-2007 ||

T R T T B SRR

9.23. TELNET LOG

Type
IN_ OUT

INPUT

OUTPUT

Function module:

IP_C: IP_C (parameterization)

S BUF: NETWORK BUFFER (transmit data)

LOG_CL: LOG_CONTROL (log-data)

S BUF_SIZE: UINT (Size of S BUF)

ENABLE: BOOL (TELNET server released)

OPTION: BYTE (Send Options)

PORT: WORD (Port Nummer)

READY: BOOL (TELNET client has established connection))

135

Version 1.21

Chapter 9. Network and Communication

Py

TELNET LOG

—%_BUF 3IIE READTH
—ENAELE b IF C
—IF Ce 3 BUF
—5 BUF b t LOG CL
—LOG CL e

TELNET _LOG is used to pass all the messages in the ring LOG_CONTROL-
buffer over TELNET. By "ENABLE", the module can be activated. At
parameter PORT the desired port number can be defined. If the parameter
is not defined the default port is 23.

With OPTION various properties can still be controlled (See Table OPTION).
If the parameter OPTION is not connected the following default is
assumed:

OPTION = BYTE#2#1000_1100;

As soon as a Telnet client connects this is indicated by parameter "READY".
Then be automatically all messages are passed to TELNET. Once occurred
new reports in the course in LOG_CONTROL they are always passed
automatically. When a new connection from/to rebuilds, all messages will
be passed again. Most TELNET clients offer the opportunity to redirect the
data stream to a file, just to make a long-term data archiving.

OPTION:

BIT |Function Description

0 SCREEN_INIT | After connecting to the TELNET console the entire screen is
cleared. If the COLOR OPTION is selected, the screen
BACK_COLOR will be deleted.

1 AUTOWRAP In AUTOWRAP = 1, the write cursor is on reaching the end
of line is automatically set to a next line. If the text output
the X,Y positions are always specified with, it is better when
AUTOWRAP = 0.

2 COLOR Enables the color mode, it will apply BACK COLOR and
FRONT_COLOR to the output.

3 NEW_LINE In NEW_LINE = 1 is automatically a carriage return and line
feed added to the end of the text. So the next text output
starts a new line. But this is only useful if no X pos and
Y_pos be specified.

4 RESERVE

5 RESERVE

136

Version 1.21

Chapter 9. Network and Communication

6 RESERVE

7 NO _BUF_FLUSH |Prevents the data in the buffer to be sent immediately. Only
if the buffer is completely full, or this option is disabled, the
data is sent. Allows fast sending many texts in the same
cycle

9.24. TELNET _PRINT

Type Function module:
IN_OUT IP_C: IP_C (parameterization)
S BUF: NETWORK BUFFER (transmit data)
INPUT TEXT: STRING(string_length) (output text)
S BUF_SIZE: UINT ((Size of the buffer S BUF)
ENABLE: BOOL (enable communication)
SEND: BOOL (positive edge - Send offense)
OPTION: BYTE (Send Options)
BACK _COLOR: BYTE (background color)
FRONT_COLOR: BYTE (foreground color)
X _pos: BYTE (X-coordinate of the cursor position)
Y_pos: BYTE (Y-coordinate of the cursor position)
PORT: WORD (port-number)
OUTPUT: READY: BOOL (module ready)
DONE: BOOL (positive edge - Transmission completed)

il

TELRET_PRIMNT
—TEXT READY—
—5_BLUF_SIZE DOME—
—EMABLE EP_C
—5EMND F5_BLIF
—OPTION

—BACK_COLOR

—FROMNT_COLOR

—%_POS

—"_FOS

—IP_C =

—5_BLUF =

137 Version 1.21

Chapter 9. Network and Communication

The module enables easy output of text to a TELNET console. At the
parameter TEXT is passed the desired string. To unlock the module for
communication, ENABLE = 1 must be set, so that the registration takes
place at IP_CONTROL. With parameter PORT can be defined the port
number you want, if not value is specified the default port 23 is activated.
With BACK_COLOR and FRONT_COLOR can be defined the colors you want,
if the function parameter OPTION is activated. The parameters X_pos and
Y_pos pass the desired coordinates of the text. If indicated in X_pos and
Y_pos the value "0", the text position is inactive, and the text are always
appended at the current cursor position. The standard Telnet console
allows X _pos (horizontal) from 1 to 80 and a Y _pos (Vertical) 1 to 25. The
behavior here can in turn be modified by OPTION (Autowrap, carriage
return, line feed, Buf Flush etc..). If a large quantity of text will be issued,
there may be a buffering enabled, so the data are written if either the
buffer is full (this is from the module induced independently) or this is
signaled by the amended OPTION parameter. By SEND = 1, the data is
written into the buffer. The parameters may only be changed again if
READY is 1, and with DONE the data acquisition was displayed as a
positive edge.

OPTION:

BIT | Function Description

0 SCREEN_INIT After connecting to the TELNET console the entire screen is
cleared. If the COLOR OPTION is selected, the screen
BACK_COLOR will be deleted.

1 AUTOWRAP In AUTOWRAP = 1, the write cursor is on reaching the end
of line is automatically set to a next line. If the text output
the X,Y positions are always specified with, it is better when
AUTOWRAP = 0.

2 COLOR Enables the color mode, it will apply BACK COLOR and
FRONT_COLOR to the output.

3 NEW_LINE In NEW_LINE = 1 is automatically a carriage return and line
feed added to the end of the text. So the next text output
starts a new line. But this is only useful if no X pos and
Y_pos be specified.

4 RESERVE

5 RESERVE

6 RESERVE

7 NO BUF_FLUSH |Prevents the data in the buffer to be sent immediately. Only
if the buffer is completely full, or this option is disabled, the
data is sent. Allows fast sending many texts in the same
cycle

138

Version 1.21

Chapter 9.

Network and Communication

FRONT_COLOR:

Byte |Color Byte |Color

0 Black 16 | Flashing Black

1 Light Red 17 |Flashing Light Red
2 Light Green 18 |Flashing Light Green
3 Yellow 19 |Flashing Yellow

4 Light Blue 20 |Flashing Light Blue
5 Pink / Light Magenta 21 |Flashing Pink / Light Magenta
6 Light Cyan 22 |Flashing Light Cyan
7 White 23 | Flashing White

8 Black 24 |Flashing Black

9 Red 25 |Flashing Red

10 |Green 26 |Flashing Green

11 Brown 27 |Flashing Brown

12 Blue 28 |Flashing Blue

13 Purple / Magenta 29 |Purple / Magenta
14 |Cyan 30 |Flashing Cyan

15 Gray 31 |Flashing Gray
BACK COLOR:

Byte |Color

0 Black

1 Red

2 Green

3 Brown

4 Blue

5 Purple / Magenta

6 Cyan

139

Version 1.21

Chapter 9. Network and Communication

7 Gray

“& ddd - HyperTerminal

Datei Bearbeiten Ansicht Aprufen Ubertragung 2

D ® 58 D5

0SCAT Telnet Print - Test: Color:

0SCAT Telnet Print — Test: Color: B2

0SCAT Telnet_Print - Test: Color: 07

0SCAT Telnet Print - Test: Color: 06

Verbunden 00:00:12 ANSIW TCP{IP MM

9.25. XML_READER

Type Function module:
IN_ OUT CTRL: XML_CONTROL
(Control and status data)
BUF: NETWORK BUFFER (Receive data)

P

XML READER
—{CTEL t= - CTRL
—EUF & = ETF

140 Version 1.21

Chapter 9. Network and Communication

XML_READER means it is possible to parse so-called 'well-formed' XML do-
cuments. Here, not as usual at high-level languages, the whole XML data
is read as a data structure and stored in memory, but a very resource-fri-
endly version is used. The XML READER reads XML data as a sequential
data stream from the buffer and signals the in COMMAND defined element
types automatically back.

With XML is a strict distinction between upper and lower case. An XML do-
cument consists of just elements, attributes, their assignments, and the
contents of the elements that can be text or child elements, which in turn
can have attributes with assigned values and content. There are elements
with and without attributes, elements can consist of many other elements,
and those that may occur within the text only, and even empty elements
that may have no content. The structure that emerges from these ele-
ments and their principles, can be understood as a tree structure. Ele-
ments always consist of tags and end tags. Attributes are additional infor-
mation about items. There are also comment elements allowed, however,
these may not between the start and end tags are of elements in
XML READER. The possible DTD - Document Type Definition only be repor-
ted as DTD, but not further evaluated and applied by XML READER. With a
CDATA section a parser is told that no markup follows, but normal text
which is reported by start-end block.

Before the first call of the XML READER a few parameters in the CTRL data
structure needs to be initialized. CTRL.START POS and CTRL.STOP_POS
defines the beginning and the end of the XML data in the buffer. CTRL.-
COMMAND with one hand, can be an initialization (Bitl5 = TRUE) and
with bit 0-14 can be defined which element / data types are reported. Here
the type codes in the following table corresponds just the bit number,
which has to be set to True in CTRL.COMMAND.

It is tried to pass the text of element, attribute, Value and Path in total
length to the accompanying STRINGS. In STRINGS greater than 255 cha-
racters this will be cut off flush left, but with block-start and block-end pa-
rameters is reported back, so that they can subsequently be evaluated yet
complete. The BLOCK-START/STOP index are is always passed parallel to
the STRINGS. If the PATH STRING is greater than 255 characters so the
PATH tracking is disabled and only "OVERFLOW" is entered as text.

Since for very large and complex XML data is not clear, how long it takes
until the module find data to report back, an WATCHDOG function is inte-
grated. A maximum processing time can be parameterized. When rea-
ching the time limit the module call is automatically canceled, and the
next cycle resumes at the same point. The type code 98 is returned.

The following type codes are defined.

Type Data Type Description
(Code)

141

Version 1.21

Chapter 9. Network and Communication

00 Unknown Undefined item found

01 TAG (element) Start - of Element
Data pointer for the element of BLOCK1

02 END-TAG (Element) End - of the element

03 TEXT Content of an element
Data pointer for value on BLOCK1

04 ATTRIBUTE Attributes of an element
Data pointer for attributes of BLOCK1
Data pointer for value on BLOCK?2

05 TAG (Processing Instruction) Instructions for processing
Data pointer for the element of BLOCK1

12 CDATA not analyzed content TEXT
Data pointer for value on BLOCK1

13 COMMENT COMMENT
Data pointer for value on BLOCK1

14 DTD Document Type Declaration
Data pointer for value on BLOCK1

98 WATCHDOG Maximum processing time reached - cancel
99 END No more items available

Sample XML

flat display

<?xml version="1.0" ?><rss version="2.0"><channel><!-- XML-Demo
--><![CDATA[CurrentConditions:
]]><title>XML _Reader</title>
<link>http://oscat.de</link></channel></rss>

Representation of the levels (without processing Instruction)

-<rss version="2.0"=

-«=channelz
«l-- ¥ML-Demo --=
Current Conditions:<fb>

<title= XML_Reader</title
ink=http:/ foscat.de </link>

</channel=
=/rss=

142 Version 1.21

Chapter 9.

Network and Communication

View as tree of item types

e

version="1.0"

B3 ¢
& wversion
E--Eﬂ channel
----- & Hoomrent
B #cdata-section

Legend:

Element - Comment

2.0

EML-Detmo
<hxCurrent Conditions:<hr />

ZML_ Reader

http://oscat.de

Attribute - Proceszing Inztruction -

i - AT S

Application

CASE STATE OF

example:

00:
STATE := 10;
CTRL.START POS := HTTP GET.BODY START; (Index des ersten Zeichen ¥*)
CTRL.STOP_POS := HTTP_GET.BODY STOP; (Index of last character ¥*)
CTRL.COMMAND := WORD#2#11111111 11111111; (* Init + report all elements *)
10:
(* XML * data read serial)
XML READER.CTRL := CTRL;
XML READER.BUF := BUFFER;

XML READER() ;
CTRL := XML READER.CTRL;

BUFFER := XML READER.BUF;

IF CTRL.TYP = 99 THEN

STATE := 20; (* Exit - no further elements available ¥*)

ELSIF CTRL.TYP < 98 THEN (* do nothing at timeout (Code 98)

(* Evaluation of the XML elements by pressing CTRL-data structure *)

END IF;
20:

143

Version 1.21

Chapter 9. Network and Communication

(* sonstiges...... *)

END CASE;

The following information is passed via the CTRL-data structure

-------- First pass --------

COUNT: 1

TYPE: 5 (OPEN ELEMENT - PROCESSING
INSTRUCTION)

LEVEL: 1

ELEMENT: xml'

PATH: 'Ixml'

-------- Next cycle--------

COUNT: 2

TYPE: 4 (ATTRIBUTE)
LEVEL: 1

ELEMENT: xml'

ATTRIBUTE: 'version'
VALUE: 1.0’

PATH: Ixml'

-------- Next cycle--------

COUNT: 3

TYPE: 2 (CLOSE ELEMENT)
LEVEL: 0

ELEMENT: xml'

PATH: "

-------- Next cycle--------

COUNT: 4

TYPE: 1 (OPEN ELEMENT - Standard)
LEVEL: 1

ELEMENT: 'rss’

PATH: 'Irss'

-------- Next cycle--------

COUNT: 5

TYPE: 4 (ATTRIBUTE)
LEVEL: 1

ELEMENT: 'rss’

ATTRIBUTE: 'version'
VALUE: '2.0'

PATH: 'Irss'

-------- Next cycle--------

COUNT: 6

TYPE: 1 (OPEN ELEMENT - Standard)
LEVEL: 2

ELEMENT: '‘channel'

PATH: '/rss/channel’

-------- Next cycle--------

COUNT: 7

144

Version 1.21

Chapter 9.

Network and Communication

TYPE:
LEVEL:
VALUE:
PATH:

COUNT:
TYPE:
LEVEL:
VALUE:
PATH:

COUNT:
TYPE:
LEVEL:
ELEMENT:
PATH:

COUNT:

TYPE:

LEVEL:

ELEMENT:

VALUE:

PATH:

-------- Next cycle--------
COUNT:

TYPE:

LEVEL:

ELEMENT:

PATH:

-------- Next cycle--------
COUNT:

TYPE:

LEVEL:

ELEMENT:

PATH:

-------- Next cycle--------
COUNT:

TYPE:

LEVEL:

ELEMENT:

VALUE:

PATH:

COUNT:
TYPE:
LEVEL:
ELEMENT:
PATH:

13 (COMMENT-ELEMENT)
2

' XML-Demo''

'/rss/channel'

8

12 (CDATA)

2

'Current Conditions:
'
'/rss/channel'

9

1 (OPEN ELEMENT - Standard)
3

'title'

'/rss/channelltitle’

10

3 (TEXT)

3

'title'

' XML_Reader
'/rss/channel/title’

11

2 (CLOSE ELEMENT)
2

'title'

'/rss/channel'

12

1 (OPEN ELEMENT - Standard)
3

"link'

'/rss/channel/link'

13

3 (TEXT)

3

"link'

'http://oscat.de'
'/rss/channel/link’

14

2 (CLOSE ELEMENT)
2

'link’

'/rss/channel'

145

Version 1.21

Chapter 9.

Network and Communication

COUNT:
TYPE:
LEVEL:
ELEMENT:
PATH:

COUNT:
TYPE:
LEVEL:
ELEMENT:
PATH:

COUNT:
TYPE:

2 (CLOSE ELEMENT)
1

'‘channel'

'Irss'

16

2 (CLOSE ELEMENT)
0

rss'

17
99 (EXIT — END OF DATA)

146

Version 1.21

Chapter 10. File-System

10. File-System

10.1. CSV_PARSER_BUF

Type Function module

IN_ OUT SEP : BYTE (devider)
RUN: BYTE (command code for current action)
OFFSET: UDINT (current file offset of the query)
VALUE: STRING (STRING_LENGTH) (value of a key)
PT: NETWORK_ BUFFER (read data buffer)
OUTPUT: RESULT: BYTE (result of query)

T

CSvV_PARSER_BUF
sEP RESULT|
HRUN & > RIUN
|OFFSET® » OFFSET
WALUE & b VALUE
1= = PT

The module CSV_PARSER _BUF enables the analysis of the elements
contained in the buffer. The number of data contained on PT.SIZE
specified. The separator is specified in parameter "SEP". The search for
elements that always begins, depending on the given "OFFSET", so it is
very easy to look at certain points in order to not always have to search
the entire buffer. At the beginning should be started with by default the
OFFSET 0O (but need not).

At the beginning of the default should be started OFFSET 0 (but need not).
Of course this is dependent on the content or the structure of the data.

Evaluate elements:

Will specify in SEP 0, lines are always evaluated completely and parameter
"VALUE" is issued. If the elements in the buffer are structured as CSV
(Excel), so at SEP the separator',' or something else can be specified. RUN
= 1 startes the evaluation. Since it is not foreseeable how long the search

147

Version 1.21

Chapter 10.

File-System

takes, a watchdog function is Integrated that stops the search for the
current cycle, then RESULT = 5 and RUN remains unchanged. In the next
cycle, the analysis proceeds automatically. As soon as the next element is
detected, the element in VALUE is passed, and RESULT is 1. If the element
is also the last in a line, then RESULT = 2 is the output. As soon as the end
of the data has been reached at RESULT = 10 passed. Always if yet RUN =
0 is output, RESULT defines the result. If an item is longer than the

maximum length (string_length) so the characters are cut off

automatically. The parameter OFFSET is by the module automatically
passed after each result, but can be defined individually before each

evaluation.

Example 1
Analyze data by lines:

Zeile 1<CR,LF>
Line 2<CR,LF>

Default: offset 0, SEP = 0 and RUN
VALUE = 'Line 1', RUN = 0, RESULT
Default: RUN = 1

VALUE = 'line 2', RUN = 0, RESULT = 2

RUN set back to 1
VALUE =", RUN = 0, RESULT = 10

Example 2
Analyze data as individual elements:

10,20<CR,LF>
a,b<CR,LF>

Offset 0, SEP ="', und RUN =1
VALUE = '10', RUN = 0, RESULT =1
RUN set back to 1

VALUE = '20', RUN = 0, RESULT = 2
RUN set back to 1

VALUE ='a', RUN =0, RESULT =1
RUN set back to 1

VALUE = 'b', RUN = 0, RESULT = 2
RUN set back to 1

VALUE =", RUN = 0, RESULT = 10

RUN: Feature List

148

Version 1.21

Chapter 10. File-System
RUN Function
0 No function to perform - and last function is complete

Element to evaluate

RESULT: Result - Feedback

RESULT | Description

1 Element found

2 Element and the end of the line identified

5 Current query is still running - call module further cyclical!
10 Nothing found - reached the end of data

10.2. CSV_PARSER FILE

Type Function module

IN_OUT SEP : BYTE (devider)

FILE NAME: STRING (file name)
FSD: FILE_SERVER_DATA (file interface)
RUN: BYTE (command code for current action)
OFFSET: UDINT (current file offset of the query)
VALUE: STRING (STRING_LENGTH) (value of a key)
PT: NETWORK BUFFER (read data buffer)

OUTPUT: RESULT: BYTE (result of query)

149

Version 1.21

Chapter 10. File-System

N

CSV_PARSER_FILE
—SEP RESULTH
—FILENAME = & FILENAME
—FSD & b FSD
—RUN & b RUN
JOFFSET b b OFFSET
IWALUE b b WALUE
1PT e b PT

The module CSV_PARSER _FILE enables the analysis of the elements of an
arbitrarily large file which is read into the read data buffer block by block
for automatically processing. The separator is specified in parameter
"SEP". The name of the file is passed in parameter "FILENAME". The search
for elements that always begins, depending on the given "OFFSET", so it is
very easy to look at certain points in order to not always have to search
the entire buffer. At the beginning should be started with by default the
OFFSET 0O (but need not).

When queried by elements of the file, there are various procedures. Of
course this is dependent on the content or the structure of the data.

Evaluate elements:

Will specify in SEP 0, lines are always evaluated completely and parameter
"VALUE" is issued. If the elements in the file are structured as CSV (Excel),
so at SEP the separator ',' or something else can be specified. RUN =1
startes the evaluation. Since it is not foreseeable how long the search
takes, a watchdog function is Integrated that stops the search for the
current cycle, then RESULT = 5 and RUN remains unchanged. In the next
cycle, the analysis proceeds automatically. As soon as the next element is
detected, the element in VALUE is passed, and RESULT is 1. If the element
is also the last in a line, then RESULT = 2 is the output. As soon as the end
of the data has been reached at RESULT = 10 passed. Always if yet RUN =
0 is output, RESULT defines the result. If an item is longer than the
maximum length (string_length) so the characters are cut off
automatically. The parameter OFFSET is by the module automatically
passed after each result, but can be defined individually before each
evaluation.

Example 1
evaluate Text file line by line:

Zeile 1<CR,LF>
Line 2<CR,LF>

150

Version 1.21

Chapter 10. File-System

Default: offset 0, SEP = 0and RUN =1
VALUE = 'Line 1', RUN = 0, RESULT = 2
Default: RUN =1

VALUE = 'line 2', RUN = 0, RESULT = 2
RUN set back to 1

VALUE =", RUN = 0, RESULT = 10

Example 2
Analyze data as individual elements:

10,20<CR,LF>
a,b<CR,LF>

Offset 0, SEP ="',"und RUN =1
VALUE ='10', RUN =0, RESULT =1
RUN set back to 1

VALUE = '20', RUN = 0, RESULT = 2
RUN set back to 1

VALUE ='a', RUN =0, RESULT =1
RUN set back to 1

VALUE = 'b', RUN = 0, RESULT = 2
RUN set back to 1

VALUE =", RUN = 0, RESULT = 10

If the file access is no longer needed, the user must close the file be either
by use of AUTO_CLOSE or MODE 5 (close file) of the FILE_SERVER.

RUN: Feature List

RUN Function

0 No function to perform - and last function is complete

1 Element to evaluate

RESULT: Result - Feedback

RESULT | Description

1 Element found

2 Element and the end of the line identified

S Current query is still running - call module further cyclical!
10 Nothing found - reached the end of data

151 Version 1.21

Chapter 10. File-System

10.3. FILE_BLOCK

Type Function module

INPUT PT_SIZE: UINT (number of bytes in the buffer)
FILE NAME: STRING (file name)
POS: UDINT (current file reading position)
OUTPUT: ERROR: BYTE (error code - See module FILE_ SERVER)
DATA: BYTE (BYTE of the requested file position)
IN_OUT MODE: BYTE (Current mode)
FD: FILE_SERVER _DATA (File Interface)
PT: NETWORK BUFFER (read data)

299

FILE BLOCK
T S1ZE ERROR{—
—FILENAHE DATA
PO t- MODE
—MODE & b FD
—FD & t PT
—PT &

The module FILE_BLOCK provides access to files of any size by a data
block that is always kept in a read buffer. If the requested byte of a file is
not stored in last block of data, automatically a matching new data block is
read and the desired byte is putted out. The greater the read buffer is the
less frequently a block must be read again. Optimally it is a linear access
to the bytes, so that as seldom as possible, a data block must be read
anew.

152 Version 1.21

Chapter 10. File-System

Sliding Window
Bytes

patei |0]1]203]|4|5]|6]|7]|8]9 10

Datenbytes einer Datei
.Datenbytes im Lesebuffer

Procedure:

The Parameter FILENAME specifies the name of the file to be read, and
with PT_SIZE the size of the read buffer is specified in bytes. The value for
parameter POS is the exact data position within the file, which has to be
read. The process is triggered by setting MODE to 1. Then the system
automatically checks whether the desired data byte is already in the read
buffer. If not, then a new matching block of data is copied into the read
buffer, and the desired data byte is passed on the parameter DATA. As
long as this operation is not finished yet, MODE remains at 1, and only
after completion of the operation of module is reset to MODE = 0. If a
specified data position is larger than the current length of the file or the
file has length 0O, so the output at ERROR is 255 (See ERROR codes from
block FILE_SERVER).

If the file access is no longer needed, the user must close the file be either
by use of AUTO_CLOSE or MODE 5 (close file) of the FILE_SERVER.

10.4. FILE_PATH SPLIT

Type Function: BOOL
INPUT FILE NAME: STRING (string_length)
IN_OUT X: FILE_PATH_DATA ' (Single path elements)

153 Version 1.21

Chapter 10. File-System

FILE_FATH_SFLIT
FILEMAME FILE_PATH_SFLITH
I B X

The module split a file path into its component elements. The drive, path
and file name are extracted and stored in the data structure X. As
directory separator "\" and "/" will be accepted. If the passed "File name" is
not empty and elements can be evaluated, the module returns TRUE,
otherwise FALSE.

Example:
c: \folderl\dir2\oscat.txt

DRIVE DIRECTORY FILE NAME

10.5. FILE_SERVER

Type Function module
IN_ OUT FSD: FILE_SERVER_DATA (file interface)
PT: NETWORK BUFFER (read / write data)

297

FILE SERVER
JdFsp e t FSD
JdPTe t PT

Available platforms and related dependencies

CoDeSys:

Does the library " SysLibFile.lib "
Runs on

WAGO 750-841

CoDeSys SP PLCWInNT V2.4

and compatible platforms

154 Version 1.21

Chapter 10. File-System

PCWORX:
No library required
Runs on all controllers with file system from firmware >= 3.5x

BECKHOFF:

Development Environment Target PLC libraries to include
Platform

TwinCAT v2.8.0 or higher PC or CX TcSystem.Lib
(x86)

TwinCAT v2.10.0 Build >= 1301 or CX (ARM) TcSystem.Lib

higher

The module FILE_SERVER enables hardware and manufacturers a neutral
access to the file system of PLC. Since at almost every hardware and
software platform, the accessibility to the file system is sometimes very
different, it is necessary to use a uniform and simplified functional
interface, which is reduced to the necessary functions. The module is
hardware-dependent and therefore it must be available for that platform
are the appropriate implementation.

WIth FILE NAME the file is determined. Depending on the platform may be
slightly different syntax (with or without the path). With MODE parameter
the principle of access is given. At MODE 1,2 and 3 with "OFFSET" the
position can be specified in the file. In the file system counting is always
started with byte 0. The first step is always to check whether this file is
already (still) open, and if not they will open and the current file size is
observed and passed to the "FILE_SIZE". When specifying a time
AUTO_CLOSE > 0Oms, the file is automatically closed after each command
and the expiration of the waiting time. Alternatively, using MODE = 5, the
closing of the file is done manually. Each write command which change the
size of the file automatically leads to a corrected "FILE_SIZE" entry, so it is
always visible how large the file is right now. Once a file is open, this is
reported on FILE_OPEN = TRUE.

Each write command at which the size of the file changes automatically
leads to a corrected "FILE_SIZE" entry, so you can always how large the
file is right now. In PT.SIZE is the actual amount of data automatically
corrected or entered.

If the MODE 1,2 or 3 called with PT.SIZE = 0, the file is opened, the
FILE_SIZE determined, but no read/write command is performed, and the
file will remain open until manually closed or AUTO_CLOSE.

155

Version 1.21

Chapter 10. File-System

If data has to be written, the data has to be stored in PT.BUFFER and in
PT.SIZE the bytes must exist. This data are written to the specified relative
offset in the file. If a write mode is called with PT.SIZE = 0, then in turn the
file is opened (if not already open, and made no write command, and
these will remain open until a manual closing or AUTO_CLOSE is carried
out.)

After every executed command that changes the position of the virtual
read / write pointer, the current position in the data structure is written in
the parameter "OFFSET". An automatic append function can be realized
very easy. The parameter FILE_SIZE has to be written to the OFFSET
parameter after opening the file. After that, all written bytes are appended
to the end without changing the OFFSET parameter manually. The same
principle can be applied of course when reading, the read pointer should
be positioned first within the file (usually starting at offset 0).

If a command is executed and FILE NAME differs from the current FILE
NAME, the old one, still open file, is closed automatically and the new one
is opened then, and continued with the normal command. This can easily
perform a flying change of the file without having to perform cumbersome
and OPEN to CLOSE before.

When you delete a file with MODE 4 automatically a potentially
outstanding file is closed before, and then deleted in sequence.

After a AUTO_CLOSE or manual closing by MODE 5 all data in
FILE_SERVER DATA is reseted.

The module FILE_SERVER should always be called periodically, at least as
long as not all requests are completed safely.

Since some platforms perform a file-lock (eg CoDeSys) and do not always
allow an asynchronous use, FILE_SERVER should run in a separate task so
that the default application is not influenced in the time behavior. .

The FILE_SERVER provides the following commands in "MODE":

MODE |Properties

1 An existing file is opened for reading and reading data optional

2 An existing file is opened for write access and optional data is written
3 A file will be created for writing and data will be written optional

4 Delete file

5 Close file

ERROR: Error codes Beckhoff

Value |trigger Description

156

Version 1.21

Chapter 10. File-System
0 No error
19 SYSTEMSERVICE_FOPEN Unknown or invalid parameter
28 SYSTEMSERVICE_FOPEN File not found. Invalid file name or file path
38 SYSTEMSERVICE_FOPEN SYSTEMSERVICE_FOPEN
51 SYSTEMSERVICE_FCLOSE |unknown or invalid file handle.
62 SYSTEMSERVICE_FCLOSE | File was opened with the wrong method.
67 SYSTEMSERVICE_FREAD unknown or invalid file handle.
74 SYSTEMSERVICE_FREAD No memory for read buffer.
78 SYSTEMSERVICE_FREAD File was opened with the wrong method.
83 SYSTEMSERVICE_FWRITE |unknown or invalid file handle
94 SYSTEMSERVICE_FWRITE |File was opened with the wrong method.
99 SYSTEMSERVICE_FSEEK unknown or invalid file handle.
110 SYSTEMSERVICE_FSEEK File was opened with the wrong method.
115 SYSTEMSERVICE_FTELL unknown or invalid file handle.
126 SYSTEMSERVICE_FTELL File was opened with the wrong method
140 SYSTEMSERVICE_FDELETE |File not found. Invalid file name or file path.
255 Application Position is after the end of file

ERROR: Error codes PCWORX:

Value |trigger Description

0 No error

2 File_open The maximum number of files already open
4 File_open The file is already open

5 File_open The file is write-protected or access denied
6 File_open File name not specified

11 File_close Invalid file handle

30 File_close File could not be closed

41 FILE_READ Invalid file handle

157

Version 1.21

Chapter 10.

File-System

50 FILE_READ End of file reached

52 FILE_READ The number of characters to read is larger than the data buffer

62 FILE_READ Data could not be read

71 FILE_WRITE Invalid file handle

81 FILE_WRITE There is no memory available to write the data

82 FILE_WRITE The count of characters to write is larger than the data buffer

93 FILE_WRITE There were no written data

0 FILE_SEEK Invalid file handle

113 FILE_SEEK Invalid positioning mode or the specified position is before the start of
the file

124 FILE_SEEK The position could not be set

131 FILE_TELL Invalid file handle

142 FILE_ REMOVE The maximum number of files already open

143 FILE_ REMOVE The file could not be found

145 FILE_ REMOVE The file is opened, readonly or access denied

146 FILE_ REMOVE File name not specified

161 FILE_REMOVE File could not be deleted

255 Application Position is after the end of file

ERROR: CoDeSys error codes:

Value |trigger Description
0 No error

1 SysFileOpen Error

2 SysFileClose Error

3 SysFileRead Error

4 SysFileWrite Error

5 SysFileSetPos Error

6 SysFileGetPos Error

7 SysFileDelete Error

8 SysFileGetSize Error

158

Version 1.21

Chapter 10. File-System

255 Application Position is after the end of file

10.6. INI-DATEIEN

An initialization file (INI file in short) is a text file, which Windows uses to
store program settings (such as location of a program). Re-starting the
program, the program settings can be imported to retake the state before
the last closing.

Due to the very simple functional structuring and handling, this default
standard ist used for program settings and for similar PLC with a file sys-
tem..

An INI file can be divided into sections, which must be enclosed in square
brackets. Information is read out as a key with an associated value.

When you create an ini file the following rules apply:

Each section must be unique.

Each key may appear only once per section.

Values are accessed by means of section and key.

A section may also contain no key

Comments start with a "#"

Comments must not be directly behind a key or a section.
Comments must always start on a new line

Is given no value for a key, an empty string is reported as the value.

Each section and each key or the following value must end with a newline.
In this case, the type of newline character does not matter since all vari-
ants are accepted. Most common variant is <CR><LF> . All control cha-
racters (not printable characters) are interpreted as end of line.

Space is always considered as part of the elements and is evaluated in the
same manner.

In principle any number of section and key can be used.

159

Version 1.21

Chapter 10. File-System

Basic structure:

#Comment
[Section]

#Comment
Key = value

Example:

[SYSTEM]
DEBUG_LEVEL=10
QUIT TIME=5

[Station 1]
NAME=ILC150 ETH
IP=192.168.15.100
M2=S2/M3/C1

[Station 2]
NAME=TILC350PN
IP=192.168.15.108
M1=S1/M1

M2=S3/M2

160

Version 1.21

Chapter 10. File-System

10.7. INI_PARSER _BUF

Type Function module

OUTPUT: RESULT: BYTE (result of query)

IN_ OUT STR: STRING(STRING_LENGTH) (searched item)
RUN: BYTE (command code for current action)
OFFSET: UDINT (current file offset of the query)
KEY: STRING(STRING_LENGTH) (found item)
VALUE: STRING (STRING_LENGTH) (value of a key)
PT: NETWORK BUFFER (read data buffer)

161

Version 1.21

Chapter 10. File-System

s

INI PLRSER EBUF
JdsTR e RESULTL
pu & b STR
JOFFSET & + RUN
JEET & b OFFSET
VLLUE & t KEY
JdrTe t VALUE

= PT

The module INI_PARSER_BUF enables the analysis of elements of a INI file
stored in a Byte-Array . Before queries can be processed the user must fill
the byte array PT.BUFFER with the ini data, and the number of bytes has to
be stored in PT.SIZE. The search for elements always begins on the given
depended "OFFSET", and hence is very easy to look only at certain
positions, or to repeat the search from a specific section to browse not
always the entire byte array. At the initial search should start default to
OFFSET 0 (but may not!). When querying sections and keys, there are
various procedures. Either it is queried to a Section and evaluates all of
the following keys by individual queries, or to use in very large
initialization file the classic enumeration (listing), which means it will be
report serially all the elements, and processed by the application.

Section Search:

To determine the OFFSET of a specific Section, STR must declare the name
of the Section and the offset can be set to a position that is located before
of the searched section. Should only the nearest available section be
found, at STR an empty sting must be passed. The search query is started
by RUN = 1. The search will take different time, depending on the
structure and size of the INI data, it takes an indefinite number of cycles
until a positive or negative result is achieved. Once the search is finished,
the INI_PARSER_BUF sets the parameters of RUN to 0. RESULT passes the
result of the search to output. Upon successful search the name of the
section is shown at parameters KEY. And then the OFFSET parameter
points to the end of the section line. Thus, immediately after that the key
evaluation can be continued, without having to manually change the
OFFSET.

Key Search:

Before a Key is evaluated, the OFFSET must have a correct value, this can
be done by manual set of OFFSET or by a previously executed Section
search. Before running the query at STR the name of the key must be are
passed. If an empty string STR is handed over, the next key found is
returned. RUN = 2 means the query can be started. Once the search is

162

Version 1.21

Chapter 10. File-System

finished, the INI_PARSER_BUF sets the parameters of RUN to 0. With
RESULT the search results will be issued. When in a query the key
identified a new Section, this is reported by RESULT = 11. Upon successful
search the output of the parameter KEY is the name of the found key , and
VALUE is the key value. And then the OFFSET parameter points to the end
of the key line. Thus, immediately after the next Key evaluation be
continued, without having to manually change the OFFSET.

Enumeration - see next item:

For very large amount of data of an initialization file to be evaluated, with
a enumeration (list) the user program can be build simple, and the
evaluation be carried out more quickly because here no line must be used
more than once. Before the start OFFSET must have a reasonable value,
the default case to 0. With RUN = 3 the evaluation is started. Once a
section or a key is found, it is also issued immediately. In a section KEY
prints the name of the Section and RESULT = 1. With a found KEY, KEY has
the key name and VALUE is the key value, and RESULT= 2.

If in a query, the end of the data array is reached, this will be reported by
RESULT = 10.

RUN: Feature List

RUN |Function

0 No function to perform - and last function has finished
1 Specific section or evaluate next found section

2 evaluate specific Key or Key found next

3 evaluate next found element (section or key)

RESULT: Result - Feedback

RESULT |Description

1 Section found

2 Key found

5 Current query is still running - call module further cyclical!
10 Nothing found - reached the end of data

163

Version 1.21

Chapter 10. File-System

" Key not found - reached the end of Section

10.8. INI_PARSER FILE

Type Function module

OUTPUT: RESULT: BYTE (result of query)
IN_ OUT FILE NAME: STRING (file name)
FSD: FILE_SERVER_DATA (file interface)
STR: STRING(STRING_LENGTH) (searched item)
RUN: BYTE (command code for current action)
OFFSET: UDINT (current file offset of the query)
KEY: STRING(STRING_LENGTH) (found item)
VALUE: STRING (STRING_LENGTH) (value of a key)
PT: NETWORK BUFFER (read data buffer)

s

INI PARSER FILE
—FILENLHE t- T RESULT-
Jrsp & t- FILENANE
JdsTR b b FSD
JrUN & b STR
—|OFFSET & b R
—EEY & = QFF3IET
—VLLUE & t KEY
drTH b WALUE

& PT

The module INI_PARSER_FILE enables the analysis of the elements of an
arbitrarily large INI file which is read into the read data buffer block by
block for automatically processing. The name of the file is passed in
parameter "FILENAME". The search for elements always begins on the
given depended "OFFSET", and hence is very easy to look only at certain
positions, or to repeat the search from a specific section to browse not
always the entire byte array. At the initial search should start default to
OFFSET 0 (but may not!). When querying sections and keys, there are
various procedures. Either it is queried to a Section and evaluates all of
the following keys by individual queries, or to use in very large
initialization file the classic enumeration (listing), which means it will be
report serially all the elements, and processed by the application.

164 Version 1.21

Chapter 10. File-System

Section Search:

To determine the OFFSET of a specific Section, STR must declare the name
of the Section and the offset can be set to a position that is located before
of the searched section. Should only the nearest available section be
found, at STR an empty sting must be passed. The search query is started
by RUN = 1. The search will take different time, depending on the
structure and size of the INI data, it takes an indefinite number of cycles
until a positive or negative result is achieved. Once the search is finished,
the INI_PARSER_BUF sets the parameters of RUN to 0. RESULT passes the
result of the search to output. Upon successful search the name of the
section is shown at parameters KEY. And then the OFFSET parameter
points to the end of the section line. Thus, immediately after that the key
evaluation can be continued, without having to manually change the
OFFSET.

Key Search:

Before a Key is evaluated, the OFFSET must have a correct value, this can
be done by manual set of OFFSET or by a previously executed Section
search. Before running the query at STR the name of the key must be are
passed. If an empty string STR is handed over, the next key found is
returned. RUN = 2 means the query can be started. Once the search is
finished, it sets the parameters of RUN to 0. With RESULT the search
results will be issued. When in a query the key identified a new Section,
this is reported by RESULT = 11. Upon successful search the output of the
parameter KEY is the name of the found key , and VALUE is the key value.
And then the OFFSET parameter points to the end of the key line. Thus,
immediately after the next Key evaluation be continued, without having to
manually change the OFFSET.

Enumeration - see next item:

For very large amount of data of an initialization file to be evaluated, with
a enumeration (list) the user program can be build simple, and the
evaluation be carried out more quickly because here no line must be used
more than once. Before the start OFFSET must have a reasonable value,
the default case to 0. With RUN = 3 the evaluation is started. Once a
section or a key is found, it is also issued immediately. In a section KEY
prints the name of the Section and RESULT = 1. With a found KEY, KEY has
the key name and VALUE is the key value, and RESULT= 2.

If in a query, the end of the data array is reached, this will be reported by
RESULT = 10.

165

Version 1.21

Chapter 10.

File-System

If the file access is no longer needed, the user must close the file be either

by use of AUTO_CLOSE or MODE 5 (close file) of the FILE_SERVER.

RUN: Feature List

RUN Function

0 No function to perform - and last function is complete

1 Evaluate specific section or evaluate next found section
2 evaluate specific Key or Key found next

3 evaluate next found element (section or key)

RESULT: Result - Feedback

RESULT |Description

1 Section found

2 Key found

5 Current query is still running - call module further cyclical!
10 Nothing found - reached the end of data

1

Key not found - reached the end of Section

166

Version 1.21

Chapter 11. Telnet-Vision

11. Telnet-Vision

11.1. TELNET_VISION

The package TELNET VISION is a framework comprising a plurality of
function modules to enable simple means with a graphical interface based
on the standard TELNET.

The GUI (Graphic User Interface) uses a screen of 80 characters wide and
24 lines down. At each coordinate (position) any displayable characters
with selectable color attributes can be displayed.

The horizontal axis (from left to right) is called standard with X, and
includes the positions 00-79. The vertical axis (from top to bottom) is
called by default to Y and includes the positions 00-23. For pure
coordinates specify the location with X and Y. If an area (rectangle) are
indicated, the upper-left corner and lower right corner X1/Y1 with X2, Y2
defined.

The individual characters can be equipped with color attributes. A color
attributes consist of a byte, where the left nibble (4 bits) the ink color
(foreground color), and the right nibble (4 bits) the background color
defines.

Example: BYTE #16 #74, (* foreground: white, and blue background *)

The following color attributes are defined:
Foreground color:

Nibble |Color Byte | Color

0 Black 8 Flashing Black

1 Light Red 9 Flashing Light Red

2 Light Green 10 |Flashing Light Green

3 Yellow 11 |Flashing Yellow

4 Light Blue 12 |Flashing Light Blue

5 Pink / Light Magenta 13 |Flashing Pink / Light Magenta
6 Light Cyan 14 |Flashing Light Cyan

7 White 15 |Flashing White

167

Version 1.21

Chapter 11. Telnet-Vision

Background color:

Nibble |Color

0 Black

1 Red

2 Green

3 Brown

4 Blue

5 Purple / Magenta
6 Cyan

7 Gray

For easy handling of the package the module TN_FRAMEWORK is
responsible, it must be called cyclically in the application, as it manages
the whole system and executes it. This communication with the telnet
client is processed, at graphic changes the system always made an
intelligent automatic update. The INPUT_CONTROL items are stored, and
the keystrokes to the respective elements forwarded, and even an optional
menu bar is available.

As this is a relatively complex interplay of many elements, in the
library under / DEMO are two applications available, that perform
with all the possibilities. It is to be advised at own projects to
ocreate them based on these two templates to get as quickly as
possible a working result, and to understand the interaction of
the individual components and modules.

168 Version 1.21

Chapter 11. Telnet-Vision

The program TN_VISION_DEMO_1 shows the following elements:

Graphical representation of lines, polygons, texts, and associated shadow,
and color scheme of the layout

Representation of a Menu Bar

Elements: EDIT_LINE (normal and hidden input), SELECT_POPUP,
SELECT _TEXT

TOOLTIP info line

[llustration of a LOG_VIEWPORT with the message buffer, and navigation
using keys.

On the home page a LOGIN function is realized. By entering the password
‘oscat’ you can switch to the next page. The main page can be changed
using the cursor up / down button and with tab between the individual
elements. The menu can be called with the Escape key. The individual
menu items are only for demonstration purposes, and lead to a log
message. Only the menu item "end/LOGOUT" leads back to the home

page.

169

Version 1.21

Chapter 11.

Telnet-Vision

TN_VISION_DEMO _1 (screen page 1)

[LOGIN-DIALOG]

TN_VISION_DEMO_1 (screen 2)

Datei

ACTION:
ACTION:
ACTION:

ACTION:
ACTION:
HCTIUN

Befehl

Bearbeiten Hilitsieiie] Ende

SYSTEM-CONSOLE 1
detail
kopieren

LOGON: USER-ADMIN
MENU_SELECT: 41
LOGON: USER-ADMIN
MENU_SELECT: 11
MENU_SELECT: 31
LOG_LEVEL 05

L0G-Level Selektion HINE Betriebsart

170

Version 1.21

Chapter 11. Telnet-Vision

The program TN_VISION_DEMO_2 shows the following elements:

Graphical representation of lines, polygons, texts and design the layout
monchrome

Elements: EDIT_LINE (normal and hidden input, and using an input mask),
SELECT TEXT

TOOLTIP info line

On the home page a LOGIN function is realized. By entering the password
'‘oscat’ you can switch to the next page. The main page can be changed
using the cursor up / down button and with tab between the individual
elements. Only the item "LOGOUT" leads back to the home page.

The two sides have shown a replica of the Telnet page of a manageable switch from
PHOENIX CONTACT, used to show that the TELNET VISION package can be used
for for simple configuration pages.

171 Version 1.21

Chapter 11.

Telnet-Vision

TN_VISION _DEMO_2 (screen page 1)

Login Screen

RHXKHHKRN

]
]
]
]
]
]

" KX
0 X
H K
HEKRY
HEKRY

HHXKHKRY

Running switch application version:

[***-)-(--)l(-**

Password:

FL SWITCH MM HS

——->» Phoenix Contact Managed Switch System <——
Phoenix Contact GmbH & Co KG
wuw . PhoenixContact . com

4.00

TN_VISION_DEMO_2 (screen 2)

Basic Switch Configuration

HEXKHHKKN

]
]
]
]
]
]

HHKKHHRK

MAC Address
IP Address
Subnet Mask
Default Gateway

H KK
0 X
K KK
HKKKK
HKKKK
Redundancy

Current Ylan Status
Vlan Mode

Port Security
Access Control for Heb
Switch Operating Mode

Heb Interface
Telnet Interface
SHHP Interface

Reset

LOGOUT APPLY SAVE

IP Parameter Assignment :

FL SWITCH MM HS

: PO:AB:45:00:6E:9B
: [192.168.178.10 1]
: [255.255.255.000]
: [192.168.178.0011]

{BootP >

R4 No Redundancy

VLAN Transparent

4 VLAN Transparent
: <Disable>

: <Disable>

: <Default >

: <Enable >

: <Enable >
: <Enable >

N Noreset K

172

Version 1.21

Chapter 11. Telnet-Vision

11.2. TN_FRAMEWORK

Type Function module

IN_ OUT Xus_ TN_INPUT_CONTROL : Us_ TN_INPUT_CONTROL
Xus_TN_SCREEN : Us TN_SCREEN
Xus TN_MENU: us TN_MENU
S BUF: NETWORK BUFFER (transmit data)
R_BUF: NETWORK BUFFER (receive data)
IP_C: IP_CONTROL (parameterization)

s

TH_FRAMEWORK
us_TN_INPUT CONTROL® b us_TN_INPUT_CONTROL
us_TN_SCREEN & b us_TN_SCREEN
us_TH_MENU b b us_TH_MENU
15 BUF & b S _BUF
R BUF & » R_BUF
P ce bIP C

The module TN_FRAMEWORK is a frame structure, which provides a
finished maturity model for TELNET-Vision .

The following tasks and functions are treated.

Connection setup and breakdown with Telnet Client
Send and receive data

Data structures for graphics functions
INPUT_CONTROL elements

Intelligent automatic updating of the Telnet display
Menu bar display

Direct access to all data structures for user program

173

Version 1.21

Chapter 11. Telnet-Vision

11.3. TN_INPUT _CONTROL

Type Function module

INOUT Xus_TN_SCREEN : Us TN_SCREEN
Xus_TN_INPUT_CONTROL: us_TN_INPUT_CONTROL

3972

TH_INPUT CONTROL

—|¥us_ TN SCREEN & b ¥us_TH_SCREEN
—|¥us TH INPUT CONTEOLE® & Xus TH INPUT COMTROL

The module TN_INPUT _CONTROL is used to manage the INPUT_CONTROL
elements. If Xus_TN_INPUT_CONTROL.bo_Reset _Fokus = TRUE then the
FOCUS is disabled on all elements and the first item gets to the focus.
Using the cursor up / down buttons and tab, the individual elements can
be selected or changed. The current element loses focus and then the next
following item gets the input focus reallocated. At the focus change of the
elements automatically a redraw of the respective elements is triggered.
The image/flashing cursor is always positioned at each active element and
is displayed. It always automatically displays and updates the ToolTip text,
as this has been configured.

It supports the following elements.
TN_INPUT_EDIT_LINE

TN_INPUT _SELECT TEXT
TN_INPUT_SELECT_POPUP

11.4. TN_INPUT EDIT_LINE

Type Function module

INOUT Xus_TN_SCREEN : Us TN_SCREEN
Xus_TN_INPUT_CONTROL: us_TN_INPUT_CONTROL

174

Version 1.21

Chapter 11. Telnet-Vision

T

TH_INPUT EDIT LINE
—|%us TN SCREEN & b Xus_TH_SCREEN
—{Zus TN INPUT CONTROL DATL b b Xus TN INPUT CONTROL DATA

The module TN_INPUT _EDIT_LINE is used to manage a command line. This
must be set *. in_ TYPE = 1.

The item will be provided as *.in_X and *.in_Y. Every entry line can be
provided with a title text. With *.in_Title_Y_Offset and *.in_Title_X_Offset
the position relative to the element coordinates is expressed. The color
can be determined with *.by_Title_Attr, and the text by *.st_Title_String. If
a tool tip should appear at the element *. st_Input_ToolTip the text hast to
be specified.

If the item has focus, using the keyboard cursor left / right the flashing
cursor can be moved within the line. The backspace key can delete
entered character. By pressing the Enter / Return key the input text is
issued at *.st_Input_String and *.bo_Input_Entered ist set to TRUE. The
input flag must be reset after receive by the user. Using *.bo_Input_Hidden
= TRUE the hidden input is activated, thus, all input characters
represented with a "*'.

Using *.st_Input_Mask determines at which position and how many
characters can be entered. At each position which a space, character can
be entered. During initialization *.st_Input_Mask must be copied once to
*.st_Input_Data.

Is *.bo_Input_Only_Num = TRUE only numeric keys are accepted and
adopted.

Example:

*.in_Type := INT#01;

*in_Y := INT#16;

*in_X := INT#09;

. by Attr mF := BYTE#16#72; (white, green *)

.by_Attr_oF := BYTE#16#74; (white, blue *)

*.in_Cursor_Pos := INT#0;

*.bo_Input_ Only Num := FALSE;

*.bo_Input_Hidden := FALSE;

*.st_Input_Mask : =" r
*.st_Input_Data := *.st_Input_Mask;

*.st_Input_ToolTip := 'inputline active | SCROLL F1/F2/F3/F4 |';
*.in_Input_Option := INT#02;

*.in_Title_Y_Offset := INT#00;

*.in_Title_X_ Offset := INT#00;

* by Title_Attr := BYTE#16#34;

*.st_Title_String := 'command: *;

175

Version 1.21

Chapter 11. Telnet-Vision

The following output:

Befehl: das i1st ein test

11.5. TN_INPUT MENU_BAR

Type Function module

INOUT Xus_TN_SCREEN : Us TN_SCREEN
Xus_ TN_MENU: us_TN_MENU

772
TH_INPUT MENT BAR
—|Zus TN MENU t- b Xus_TH_ MENT
—¥us TN SCREEN b b ¥us TN SCREEN

The module TN_INPUT_MENU_BAR is used to manage and view the
Menu_Bar. The element is shown in *.in_X and *.in_Y. The menu items are
stored as elements within verschachelte *.st MENU _TEXT. Two different
separators are used. A '$' separates the different menu lists, and each
menu list is further divided by '#' into individual menu items. The first
menu list is the actual menu bar, this implies the number of sub-menus,
and the titles of the elements. Then all the sub-menu lists are follow and
are separated by '%'. To devide individual sub-menu items from each other
or providing them with a cut line, an '-' has to submitted as text menu-
element.

By pressing the Escape key, the menu bar activated and the respective
sub-menu is displayed using the module TN_INPUT_MENU_POPUP. Within
the sub-menu can be navigated with up / down key. Within the sub-menu
can be navigated with up / down cursor. If a sub-menu item is confirmed
by pressing Enter / Return key, then in *.in_Menu_Selected the number of
the selected menu-point is passed. The calculation of the menu item
number is as following: Main menu index * 10 + Submenu-index. The entry
in *.in_Menu_Selected needs set again to 0 after acceptance by users.

Thus, a maximum of 9 main menu items and each 9-Submenu items are
executable. Means of escape key at any time the menu can be hided
again.

176

Version 1.21

Chapter 11. Telnet-Vision

Active Menu automatically backs up the background before it is drawn,
and restores the background after ending.

As long as a menu is display, the user program may not make graphical
changes. This can be checked by TN_SCREEN.bo_Menue_Bar Dialog =
TRUE.

Example:

*in X := INT#00;

*in Y := INT#00;

* by Attr mF := BYTE#16#33; (* yellow + brown *)
.by_Attr_oF := BYTE#16#O0F; (black + grey *)
*.st MENU_TEXT := 'File#Edit#View#End";

* st MENU _TEXT := CONCAT(*.st. MENU TEXT,
‘%oeffnen#-#speichern#beenden%loeschen#-#einfuegen#-#kopieren');
.st MENU_TEXT := CONCAT(.st. MENU_TEXT,
'‘Y%alles#detail#kopieren%LlLogout’);

*.bo_Create := TRUE;

The following output:

Datei Bearbeiten HAnsicht Ende

Helsaeiti-ae Ansicht Ende

loeschen

einfuegen

kopleren

177 Version 1.21

Chapter 11. Telnet-Vision

11.6. TN_INPUT_MENU_POPUP

Type Function module

INOUT Xus_TN_SCREEN : Us TN_SCREEN
Xus_ TN_MENU: us_TN_MENU

277
THN_INFUT MENU FPOPUF

—|%us TH MENU PCPUP b & Xus TH MENU POPUP
—¥us_THN SCREEN b b Xus TN SCREEN

The module TN_INPUT_MENU_POPUP is used to manage and display the
Menu_Bar Submenu and for the representation of
TN_INPUT_SELECT_POPUP elements. The element is shown in *.in_X and
*.in_Y. The menu items are stored as elements within *.st_ Menu_Text. The
individual element are devided from each other using '#'. To devide
individual sub-menu items from each other or providing them with a cut
line, an '-' has to submitted as text menu-element.

Within the sub-menu can be navigated with up / down key. If a sub-menu
item is confirmed by pressing Enter / Return key, then in
*.in_Menu_Selected the number of the selected menu-point is passed.

An active Menu automatically backs up the background before it is drawn,
and restores the background after ending.

As long as a menu is display, the user program may not make graphical
changes. This can be checked by TN_SCREEN.bo_Menue _Bar Dialog =
TRUE or TN_SCREEN.bo_Modal_Dialog = TRUE.

The module is primarily from TN_INPUT_MENU BAR and
TN_INPUT_SELECT_POPUP used internally, and need not be executed
directly by the user.

11.7. TN_INPUT_SELECT_POPUP

Type Function module

INOUT Xus TN_SCREEN : Us_TN_SCREEN

178 Version 1.21

Chapter 11. Telnet-Vision

Xus_TN_INPUT CONTROL: us_TN_INPUT _CONTROL

772

TN _INPUT SELECT POPUP

—|Zus_TN_SCREEN & t Xus_TH_SCREEN
—|Zus TN INPUT CONTROL DATA b t ¥us_ TN INFUT CONTROL DATA

The module TN_INPUT_SELECT_POPUP is used to manage a selection of
texts, by displaying a pop-up dialogue. This must be set *.IN_TYPE = 3.

The item will be provided as *.in_X and *.in_Y. Every entry line can be
provided with a title text. With *.in_Title_Y_Offset and *.in_Title_X_Offset
the position relative to the element coordinates is expressed. The color
can be determined with *.by_Title_Attr, and the text by *.st_Title_String. If
a tool tip should appear at the element *. st _Input_ToolTip the text hast to
be specified.

The selection of texts will be handed over in *.st_Input_Data. The text
element should be separated from each other by the character '#'.

If the focus is on an element, using the Enter / Return key selection dialog
can be activated.

With the cursor up/down can be changed between the individual elements.
If the beginning or the end of the list will be reachted, it continues at the
opposite side.

The text-element is connected by means *.st_Input_Mask, meaning that
the output text length are affected later.

By pressing the Enter / Return key is the text of the selected element is
passed to *. st Input_String and *. bo_Input_Entered = TRUE. The input
flag must be reset after receive by the user.

An active selection (selection dialog) can always be canceled with the
Escape key.

Example:

*.in_Type := 03;

*in Y := 20;

*in X :=18;

* by Attr mF := 16#17;

* by Attr oF := 16#47;

*.st_Input_ToolTip :=
‘Change the current log level | Press enter to select | ;

*.in_Input_Option := 00;

*.in_Title_Y_Offset := 00;

*.in_Title_X_Offset := 00;

*. by _Title_Attr := 16#34;

179

Version 1.21

Chapter 11. Telnet-Vision

* st_Title_String := ' LOG-Level ';

*st_Input_Mask :=" "

*.st_Input_Data :=
'01#02#03#04#05#06#07#08#09#10#11#12#13#14#15";

The following output:

LOG-Level

11.8. TN_INPUT SELECT TEXT

Type Function module

INOUT Xus_TN_SCREEN : Us_TN_SCREEN
Xus_TN_INPUT_CONTROL: us_TN_INPUT_CONTROL

297

TN _INPUT SELECT TEXT

—|xus_TH_SCREEN & t Xus_TH_SCREEN
Xus TH INPUT CONTROL DATA b b ¥us_ TN INPUT CONTROL DATA

The module TN_INPUT_SELECT _TEXT is used to manage a selection of
texts. This must be set *.IN_TYPE = 2.

180 Version 1.21

Chapter 11. Telnet-Vision

The item will be provided as *.in_X and *.in_Y. Every entry line can be
provided with a title text. With *.in_Title_Y_Offset and *.in_Title_X_Offset
the position relative to the element coordinates is expressed. The color
can be determined with *.by_Title_Attr, and the text by *.st_Title_String. If
a tool tip should appear at the element *. st _Input_ToolTip the text hast to
be specified.

The selection of texts will be handed over in *.st_Input_Data. The text
element should be separated from each other by the character '#'.

If the Element has the focus, by using the spacebar (space) can be
changed between the individual texts. The text-element is connected by
means *.st_Input_Mask, meaning that the output text length are affected
later.

By pressing the Enter / Return key the input text is issued at
*.st_Input_String and *.bo_Input_Entered ist set to TRUE. The input flag
must be reset after receive by the user.

Example:

*.in_Type := 2;

*in_ Y := 20;

*in_X := 58;

* by Attr mF := 16#17;

* by Attr oF := 16#47;

*.st_Input_ToolTip := ' selection text active | press space to select [';
*.in_Input_Option := 02;

*.in_Title_Y_Offset := 00;

*.in_Title_X_Offset := 00;

* by Title_Attr := 16#34;

*.st_Title_String := ' operation mode’;

*.st_Input_Mask : =" r

*.st_Input_Data := '<Auto>#<Hand># <Stop># <Restart>";

The following output:
||

Betriebsart

181 Version 1.21

Chapter 11.

Telnet-Vision

11.9. TN_RECEIVE

Type Function module
IN_OUT Xus_TN_SCREEN: us_TN_SCREEN
R_BUF: NETWORK_BUFFER (Telnet receive buffer)
277
TH_RECEIVE
—F_BUF & + B_BUF
—¥us TW ICREEN &= - Zus TW ICREEN

The module TN_RECEIVE receives input data from the Telnet client, and
evaluates the key codes.

If the key code in the range 32-126 it shall be stored as ASCIl code under
Xus TN _SCREEN, by Input_ASCIl_Code. In addition,
Xus_TN_SCREEN.bo_Input_ASCII_IsNum = TRUE if this corresponds to a
number between 0 and 9.

If the key code is of the following extended code then this is filed under
Xus_TN_SCREEN,by Input_Exten_Code.

Exten_code Button name
65 Cursor up

66 Cursor down
67 Cursor RIGHT
68 Cursor left

72 Pos1

75 End

80 F1

81 F2

82 F3

83 F4

8 Backspace

182

Version 1.21

Chapter 11. Telnet-Vision

9 Tabulator
13 Return (Enter)
27 Escape

11.10. TN_SEND_ROWS

Type Function module

INPUT S_BUF_SIZE: UINT (number of bytes in S_BUF.BUFFER)
IN_OUT IP_C: IP_CONTROL (Connection data)
S BUF: NETWORK BUFFER (transmit data)
Xus_TN_SCREEN: us_ TN_SCREEN

227
TN _SEND ROWS

—3_BUF_SIZE b IF C
HIF C& > S BUF
3 BUF & b Xus_TN_SCREEN

—Eus TH SCREEN e

The module TN_SEND ROWS is used to automatically update the graphical
changes to the Telnet screen, by send the modified lines to the Telnet
client.

If you change the Telnet screen a color or a character in a line, this line is
always automatically selected for update. The module checks if marked at
Xus_TN_SCREEN.bya_Line_Update [0..23] one or more lines, and generates
an ANSI-code byte-stream which is sent to the Telnet client. Furthermore,
when Xus TN_SCREEN.bo_Clear Screen = TRUE a clear screen is triggered.
Upon detection of a new Telnet client connection automatically all the rows
are marked for update, so that the whole screen content is rendered. If the
required amount of data greater than S_ BUF.BUFFER the data is
automatically output in blocks.

183

Version 1.21

Chapter 11. Telnet-Vision

11.11. TN_SC ADD SHADOW

Type Function module

INPUT: lin_Y1: INT (Y1 coordinate of the area)
lin_X1: INT: (X1 coordinate of the area)
lin_Y2: INT (Y2 coordinate of the area)
lin_X2: INT: (X2-coordinate of the area)
lin_OPTION: INT: (kind of the shadow)

IN_ OUT Xus TN _SCREEN : Us TN_SCREEN

s

TH_SC_ADD SHADOW

HIin ¥1 v Xus TN SCREEN
Iin X1

lin_¥2

Iin Xz

—Iin OFTION

—¥us TN SCREEN b

The module TN_SC ADD SHADOW allows you to add optical shadow to
rectangular glyphs. By specifying a rectangular area by means of the
parameters X1, Y1 and X2, Y2, a basic framework is defined, at which at
the right and bottom color darkened lines are drawn (shadow). The
shadow coordinates X1, Y1 and X2, Y2 are always given +1 for proper
primitive. OPTION means you can choose between two shadow variations.
If OPITION = 0 then the shadow is reached by pure color adjustment
(darkening of the character) . If an OPTION > 0, in the area of the shadow
all the characters replaced by black filled characters.

11.12. TN_SC_AREA RESTORE

Type Function module

INOUT Xus_TN_SCREEN : Us TN_SCREEN

184

Version 1.21

Chapter 11. Telnet-Vision

s

TH_SC_AREL RESTORE
—Xus_TN_SCREEN b b Xus TN SCREEN

The module TN_SC_AREA RESTORE enables recovery of previously saved
screen area. The screen data in Xus TN_SCREEN.bya BACKUP [x] is
restored using the stored coordinates. This is done mainly done after the
call from the module MENU-BAR amd MENU-POPUP, to restore the modified
screen.

11.13. TN_SC_AREA SAVE

Type Function module

INPUT: lin_Y1: INT (Y1 coordinate of the area)
lin_X1: INT: (X1 coordinate of the area)
lin_Y2: INT (Y2 coordinate of the area)
lin_X2: INT: (X2-coordinate of the area)

IN_ OUT Xus TN _SCREEN : Us TN_SCREEN

297

TH_SC_AREA SAVE

Iin ¥1 & Xus TN SCREEN
HIin_x1

_Iin ¥z

_Iin Xz

—Zus TN SCREEN b

The module TN_SC_AREA SAVE allows you to save of rectangular areas of
the screen before it is modified by other drawing operations. This is mainly
done before the call from the module BAR-MENU and MENU-POPUP ,
because these are the elements as an overlay graphic. Means X1, Y1 and
X2, Y2 are given the coordinates of the secured area of the screen. The
data are saved in the data area Xus_TN_SCREEN.bya BACKUP [x]. Here the
coordinates and the actual characters and color information is stored. The
buffer can hold up half the area of the screen.

185

Version 1.21

Chapter 11. Telnet-Vision

11.14. TN_SC_BOX

Type Function module

INPUT: lin_Y1: INT (Y1 coordinate of the area)
lin_X1: INT: (X1 coordinate of the area)
lin_Y2: INT (Y2 coordinate of the area)
lin_X2: INT: (X2-coordinate of the area)
Iby_FILL: BYTE: (fill in the character of the area)
Iby ATTR: BYTE: (color code to fill the area)
Iby BORDER: BYTE: (type of frame)

IN_ OUT Xus TN _SCREEN : Us TN_SCREEN

277
TH_SC_BOX
Tin 71 "~ b Xus_TH SCREEN
HIin X1
lin Y2
lin X2
Iby FILL
Iby ATTR
Tin BORDER
¥us TN SCREEN b

The module TN_SC BOX is used to draw a rectangular area, that is filled
with the specified character in Iby FILL. With parameter Iby ATTR fill color
can be specified. The fill area is drawn with a border that is given by

lin BORDER.

Border types:

0 = no border

1 = frame with a single line
2 = frame double line

3 = frame with spaces

Example: Box with leaders 'X' and white color to blue

186 Version 1.21

Chapter 11.

Telnet-Vision

Representation with lin_BORDER value 0,1,2 and 3 (from left to right)

11.15. TN_SC_FILL

Iby_CHAR: BYTE: (character to fill in the the area)

Type Function module
INPUT: lin_Y1: INT (Y1 coordinate of the area)
lin_X1: INT: (X1 coordinate of the area)
lin_Y2: INT (Y2 coordinate of the area)
lin_X2: INT: (X2-coordinate of the area)
Iby_ATTR: BYTE: (color code to fill the area)
IN_ OUT Xus TN _SCREEN : Us TN_SCREEN
277
TH_SC FILL
H1in ¥1 b ¥us TN SCREEN
H1in ¥1
Iin vz
—Iin ¥z
—{Iby CHAR
—Ihy Attr
—{Xus TM SCREEN &

The module TN_SC FILL is used to draw a rectangular area, that is filled
with the specified character in Iby FILL.

Example: Box with leaders 'X' and white color to blue

187

Version 1.21

Chapter 11.

Telnet-Vision

i

11.16. TN_SC_LINE

Type Function module
INPUT: lin_Y1: INT (Y1 coordinate of the line)
lin_X1: INT: (X1 coordinate of the line)
lin_Y2: INT (Y2 coordinate of the line)
lin_X2: INT: (X2-coordinate of the line)
Iby_ATTR: BYTE: (color code of the line)
Iby BORDER: BYTE: (type of line)
IN_ OUT Xus TN _SCREEN : Us TN_SCREEN
227
TH_SC_LINE
H1in x1 b Xus_TH SCREEN
H1in ¥1
Tin ¥z
—Iin v2
Iby ATTR
—Iby BORDER
—{Zus TM SCREEN &

The module TN_SC _LINE is used to draw horizontal and vertical lines. By
means of the X1/Y1 and X2/Y2 coordinates defines the beginning and the
end of the line. The line type is passed by lin_ BORDER and the color code
with Iby ATTR. If when drawing a line and another line of this type cut,
automatically the appropriate crossing sign is used.

188

Version 1.21

Chapter 11. Telnet-Vision

Border types:

1 = line with single line

2 = line with double line

> 2 = line is drawn with the specified character in lin_BORDER

Example:

Horizontal line: type single-line

Vertical line: Type Double-Line

Horizontal and vertical lines crossed: Single-Line Type
Horizontal and vertical lines crossed: Type Double-Line
Horizontal line: type character (X)

i
e

AXRERE RN NE RS

189 Version 1.21

Chapter 11. Telnet-Vision

11.17. TN_SC_READ ATTR

Type Function module

INPUT lin_Y: INT: (Y coordinate)

lin_X: INT: (X coordinate)
OUTPUT Oby ATTR: BYTE: (color information at position X /Y)
IN_ OUT Xus TN _SCREEN : Us TN _SCREEN

277

TH_SC_READ ATTR
Iin ¥ - Oby_ ATTR{-
Tin X b ¥us TH_SCREEN
—{%us TN SCREEN b

The block TN_SC _READ _ ATTR is used to read the current color of the
character at the specified location X /Y.

11.18. TN_SC_READ CHAR

Type Function module

INPUT lin_Y: INT: (Y coordinate)

lin_X: INT: (X coordinate)
OUTPUT Oby CHAR: BYTE: (character at position X /Y)
IN_ OUT Xus TN _SCREEN : Us TN _SCREEN

227
TH_SC_READ CHAR
dIin ¥ - Oby CHAR[
dIin x b Xus_TH_SCREEN
—%us TN _SCREEN &

The module TN_SC READ_CHAR is used to read the current character at
the specified location X /Y.

190

Version 1.21

Chapter 11. Telnet-Vision

11.19. TN_SC_SHADOW ATTR

Type Function: BYTE
INPUT Iby ATTR: BYTE: (Color Information)

TH_SC_SHADOW_ATTR
—Iby ATTR TH 5C SHADOW ATTRl-

The block TN_SC SHADOW _ATTR converts a light color to a dark color.

11.20. TN_SC_VIEWPORT

Type Function module

INPUT lin_Y: INT: (Y coordinate)
lin_X: INT: (X coordinate)
lin_Width: INT: (width of the window - the number of characters)
Idw_ATTR_1: DWORD: (color 1,2,3 and 4)
ldw_ATTR_2: DWORD: (color 5,6,7 and 8)
Iti_ TIME: TIME: (update time)
IN_ OUT Xus LOG_VIEWPORT: LOG_VIEWPORT
Xus LOG_CONTROL: LOG_CONTROL
Xus TN _SCREEN: us TN _SCREEN

333
TH_SC_VIEWPORT

—1in % b Xus_LOG VIEWFORT
—1in ¥ b Xus_LOG_CONTROL
Iin Width b ¥us_TH_SCREEN
~{Idw LTTE_1

Idw ATTE 2

Iti TINE

Xus_LOG_VIEWPORT t-
Fus_LOG_CONTROL t-
—¥us_TN SCREEN b

191 Version 1.21

Chapter 11. Telnet-Vision

The module TN_SC VIEWPORT is used to display messages from the data
structure LOG_CONTROL within a rectangular area on the screen. The
desired messages are processed before using with Block LOG_VIEWPORT,
and if necessary, with Xus_LOG_VIEWPORT.UPDATE an update is triggered.
Means lin_X and lin_Y defines the upper-left corner of the window, and with
lin_Width the width if of the viewing window is defined. The number of
rows to be displayed is determined by Xus LOG_VIEWPORT.COUNT. The
color information is stored in Xus_LOG CONTROL MSG_OPTION [x] per
message. It is converted to the configured color codes from Idw ATTR 1
and Idw_ATTR2 automatically, so the colors in the presentation can always
be adjusted individually. The messages are always automatically reduced
to the width of the window or cut off.

11.21. TN_SC_WRITE

Type Function module

INPUT lin_Y: INT (Y coordinate)
[fzy] lin_X: INT: (X coordinate)
Iby ATTR: BYTE: (color code - font color)
Ist. STRING: STRING (text)

IN_ OUT Xus TN _SCREEN : Us TN_SCREEN

229

TH_SC_WRITE

dIin ¥ "~ b Xus TH SCREEN
{Iin x

~Iby ATTR

~Ist_STRING

—{%us TN SCREEN b

The module TN_SC_WRITE passes the text Ist STRING at the coordinates
lin_Y, lin_Y and the color of Iby ATTR.

Is specified color code = 0, then the string is displayed without change the
existing old color information at he respective character positions.

192

Version 1.21

Chapter 11. Telnet-Vision

11.22. TN_SC_WRITE_ATTR

Type Function module

INPUT lin_Y: INT (Y coordinate)
[fzy] lin_X: INT: (X coordinate)
Iby ATTR: BYTE: (color code)
IN_ OUT Xus TN _SCREEN : Us TN _SCREEN

227
TH_SC_WRITE_ATTR

Iin ¥ - b Xus_TH SCREEN

Iin X

Iby ATTR

—~%us TN SCREEN b

The module TN_SC _WRITE_ATTR changes at the given coordinates lin_Y,
lin_Y the colorcode to change without changing the existing character at
that position.

11.23. TN_SC _WRITE_C

Type Function module

INPUT lin_Y: INT (Y coordinate)
[fzy] lin_X: INT: (X coordinate)
Iby ATTR: BYTE: (color code)
Ist STRING: STRING: (text)
lin_LENGTH: INT: (text will be adjusted to this length)
lin_OPTION: INT: (option-length adaptation of the text)
IN_ OUT Xus TN _SCREEN : Us TN_SCREEN

193 Version 1.21

Chapter 11. Telnet-Vision

227

TH_SC_URITE C

dIin ¥ "~ > Xus_TH SCREEN
dIin x

by ATTR

Ist_STRING

Iin LENGTH

Iin OPTICH

¥us TN SCREEN b

The module TN_SC WRITE_C is at the given coordinates lin_Y, lin_Y
Ist STRING the text with the color of Iby ATTR. The text is adapted before
output on the length lin_LENGTH, and by lin_OPTION, the text position is

determined.

lin_ OPTION

0 = right fill with spaces eg 'TEST '
1 = left fill with blanks eg'’ TEST '

2 = center and fill with blanks eg' TEST

11.24. TN_SC_WRITE_CHAR

Type Function module

INPUT lin_Y: INT: (Y coordinate)
lin_X: INT: (X coordinate)
OUTPUT Iby CHAR: BYTE: (sign)
IN_ OUT Xus TN _SCREEN : Us TN_SCREEN

227
TH_SC_WRITE_CHAR

Iin ¥ - b Xus TH SCREEN

Tin X

Iby CHAR

~%us TN SCREEN &

The module TN_SC_WRITE_CHAR passes the character Iby CHAR at the
given coordinates lin_Y, lin_X, and does not change the color information
at the specified position.

194 Version 1.21

Chapter 11. Telnet-Vision

11.25. TN_SC_WRITE_EOS

Type Function module

INPUT Iby ATTR: BYTE: (color code - font color)
Ist STRING: STRING (text)
IN_ OUT Xus TN _SCREEN : Us TN_SCREEN

297
TH_SC_WRITE EOS
Iby ATTR b Xus TH SCREEN
Ist_STRING
—%us_TH SCREEN b

The module TN_SC WRITE_EOS passes at the end position of the last, with
TN_SC WRITE or TN_SC WRITE_EOS issued text, the text Ist STRING with
the color of Iby ATTR.

This allows to continuous passes texts without the need to always pass the
new coordinates.

11.26. TN_SC_XY_ERROR

Type Function: BOOL

INPUT: X: INT: (X coordinate)
Y: INT: (Y coordinate)

195 Version 1.21

Chapter 11.

Telnet-Vision

TH_SC XY ERROR
TN _SC_XY ERROR|-

The module TN_SC XY ERROR checks whether the specified coordinate is
within the screen area. If the check fails, as result is passes TRUE.

11.27. TN_SC_XY2_ERROR

Type Function: BOOL
INPUT: X1: INT: (X1 coordinate of the area)
Y1: INT: (Y1 coordinate of the area)
X2: INT: (X2-coordinate of the area)
Y2: INT: (Y2 coordinate of the area)
TN _SC_XYZ ERROR
—{x1 TH_SC_XVZ ERROR
—{¥1

The module TN_SC_XY2_ERROR checks whether the specified coordinates
are within the screen area. The area may not cross off the screen. If the
check fails, as result is passes TRUE.

196

Version 1.21

Chapter 12. Network Variables

12. Network Variables

12.1. NET_VAR

The modular package NET VAR * enables the bidirectional process data
exchange between two controllers on which network.lib is available. Bet-
ween the two controls a point to point (P2P) connection is established. The
process data can by means of the modules

NET_VAR_BOOLS
NET_VAR_DWORD
NET_VAR_BUFFER
NET_VAR_STRING
NET_VAR_REAL

be collected or passed. Each of these modules has input and output pro-
cess data which are automatically exchanged with the other party (other
plc).

IN data on the one side are output as the OUT data on the other side
again.

In this way process data can be exchanged easily between the same con-
trols but also between different controllers and platforms (WAGO, Beck-
hoff, Phoenician CONTACT).

Approach to the creation of the master module:

First all required process data can be parameterized or transferred by
means of NET_VAR * modules instances. Finally, once the NET VAR _CON-
TROL must be passed, the process data are then automatically exchanged
with the other side. The IP address of the second plc and MASTER = TRUE
must be set.

Approach to create the slave module:

The previously created master device must simply be copied 1:1. The IP
address must be replaced by the opposite side, and be set at MASTER =
FALSE.

197

Version 1.21

Chapter 12.

Network Variables

E—————————
191 1RE1FE 3

Example: (See diagram below)

The input data (A) from the master PLC will pass through by module
NET_VAR BOOL8 and transferred by NET_VAR_CONTROL to another con-
troller (PLC SLAVE), and then again re-issued at the same NET_VAR BOOLS8

element in the output data (B).

The input data (C) from the slave PLC is passed through the module
NET_VAR_BOOLS8 and transfered by NET_VAR_CONTROL to another control-
ler (PLC master), and then again re-issued at the same NET VAR BOOLS8

element in the output data (D).

PLC (Master)

IP192.168.178.2

NET_VAR_BOOLS
M1 oum
IMN2 QU2
IM3 ouT3
4 ouUT4
M5 OUTS
IME OUTE
IN? QuUT?
—iMg ouTs
b 10

B

I 1 & 1 1 1

1
T TTTTTTTI

1

Ll L

MNET_VAR_CONTROL
ACTIVATE

MASTER

LDF

REMOTE_IP4
REMOTE_FORT

SCAMN_TIME

WATCHDOG

RUM
ERROR
L

G b

PLC (Slave)

IS 16R 1782

ar

IP192.168.178.3

a0

NET_waAR_BOOLS
IM1 oum
N2 ouT2
IM3 ouT3
It4 ouT4
ING ouTS
IME QUTE
IN7 ouT?
IME ouTs
b D

b]

| [] [e o] [|

kel

NET_WAR_CONTROL
ACTIWVATE
MASTER
JDF
REMOTE_IF4
REMOTE_PORT
SCAN_TIME
WMATCHDOG
i b

RUMN
ERROR
L

198

Version 1.21

Chapter 12. Network Variables

12.2. NET_VAR_CONTROL

Type Function module:

IN_ OUT X: NET_VAR DATA (NET VAR data structure)

INPUT ACTIVATE : BOOL (Enables the exchange of data)
MASTER : BOOL (FALSE = SLAVE / MASTER = TRUE)
UDP : BOOL (FALSE=TCP / TRUE = UDP)
REMOTE_IP4: DWORD (IP4-address of the other SPS)
REMOTE_PORT: WORD (PORT number of other PLC)
SCAN_TIME: TIME (update time)
WATCHDOG: TIME (monitoring time)

OUTPUT RUN : BOOL (active data exchange - no error)
ERROR DWORD ((error code)

P

MNET_WAR_COMNTROL
ACTIVATE RN
MASTER ERROR—
—HUDF B X
FEMOTE_IF4
REMOTE_FORT
SCAN_TIME
WA T CHDOG
e

The module NET_VAR_CONTROL coordinates the data exchange between the two
controllers and the satellite components NET_VAR_*. With ACTIVATE = TRUE, the
data exchange will be released. The module must be invoked on both controllers,
with the parameter MASTER must be assigned once with TRUE and once must be
FALSE. Thus determines which side the active connection will establish. With UDP
(FALSE / TRUE) can be specified whether a UDP or TCP connection is used. The the
IP address of the other side must be specified in REMOTE-IP4, and alternatively, the
port address (default port is 10000). The SCAN TIME determines a data refresh
interval (defaultis T # 1s). With WATCHDOG the monitoring time is set (defaultis T #
2s). When data exchange runs, the parameter RUN = TRUE. If the data exchange is
longer than the watchdog time not possible, RUN = FALSE and an error is passed.
The error will not be acknowledged, because the module automatically tries to
restore the data exchange. Once no more error exists, RUN = TRUE and the error
code is cleared.

ERROR: (regarded as a HEX value!)

DWORD Message Type Description

199

Version 1.21

Chapter 12. Network Variables

B3 |B2 |B1 |BO
XX |.. |.. |.. |Connection establish Connect Error - See module IP_CONTROL
XX |.. |.. |Senddata Transmission error - See module IP_CONTROL
XX |.. |Receive data Receive Error - See module IP_CONTROL
XX | Configuration error ID number of the module

12.3. NET_VAR_BOOLS

Type Function module:
IN_ OUT X: NET_VAR _DATA (NET_VAR data structure)
INPUT IN1 ..8 BOOL (signal input)
OUTPUT OUT1 ..8 BOOL (signal output)
ID: BYTE (ID)

'

MET_WaAR_BOOLE
—{IM1 QuTT =
Mz QU2
—{IM3 oUT3—
—{IM4 ouTa—
—{IME oUTh
—{IME oUTh—
MY QU=
—{IMg ouUTE—
— e D

B

The module is used for bidirectional transmission of NET_VAR_BOOLS8 8 binary
signals from the master to slave and vice versa. The signals IN 1..8 are collected and

passed to the other side (control) on the same module at the same position as
OUT1..8 again.

Simultaneously, the on the opposite side (other control) passed input data passed
here as a OUT1..8 again.

200

Version 1.21

Chapter 12. Network Variables

ID parameter indicates the current identification number of the module instance. If the
configuration of the master and the slave program is differently (incorrectly) that ID
number is passed as a fault in the module NET_VAR_CONTROL.

12.4. NET_VAR BUFFER

Type Function module:
IN_OUT X: NET_VAR DATA (NET_VAR data structure)
BUF IN : ARRAY [1..64] OF BYTE (input data buffer)
BUF_OUT : ARRAY [1..64] OF BYTE (output data buffer)
OUTPUT ID: BYTE (ID)

s

MET_“AR_BLUFFER
—BUF_IM & IC—
—BUF_DOUT & e BLF_IM
—{x e &= BUF_OUT

B

The module NET_VAR_BUFFER is used for bidirectional transmission of 64 bytes
from the master to slave and vice versa. The data from BUF _IN be recorded and

passed on the other side (other plc) on the same module at the same position as
BUF_OUT.

Simultaneously, the input data on the opposite side (other control) is passed here as
BUF_OUT again.

ID parameter indicates the current identification number of the module instance. If the
configuration of the master and the slave program is differently (incorrectly) that ID
number is passed as a fault in the module NET_VAR_CONTROL.

201 Version 1.21

Chapter 12. Network Variables

12.5. NET VAR DWORDS

Type Function module:
IN_ OUT X: NET_VAR DATA (NET VAR data structure)
INPUT IN 1..8 : DWORD (input DWORD)
OUTPUT OUT 1..8 : DWORD (output DWORD)
ID: BYTE (ID)
777
MNET_WAR_DWORDS
M OUT1
—irz OUT2
—ir3 OUT3
—IM4 QUT4—
—IM5 QUTE—
I OUTE—
-7 OUT7
—{ir OUTa-
g D
B ¥

The module NET_VAR_DWORDS is used for bidirectional transmission of eight
DWORD from the master to slave and vice versa. The signals DWORD IN1..8 are
collected and passed to the other side (control) on the same module at the same
position as OUT1..8 again.

Simultaneously, the on the opposite side (other control) passed input datawords
passed here as a OUT1..8 again.

ID parameter indicates the current identification number of the module instance. If the
configuration of the master and the slave program is differently (incorrectly) that ID
number is passed as a fault in the module NET_VAR_CONTROL.

12.6. NET VAR REALS

Type Function module:
IN_ OUT X: NET_VAR DATA (NET_VAR data structure)
INPUT IN 1..8:REAL (input)
OUTPUT OUT 1 .. 8 : REAL (output value)
ID: BYTE (ID)

202

Version 1.21

Chapter 12. Network Variables

P

MET_WAR_REALSD
—{IM1 QU =
Mz o2
—{IM3 oUT3—
M4 QU4
—{INE OUTh -
—IME OUTE-
M7 oLUT? =
—{IMa o8-
e IO~

B

The module NET_VAR_REALS is used for bidirectional transmission of eight REAL-
values from the master to slave and vice versa. The REAL values IN1..8 are
collected and passed to the other side (control) on the same module at the same
position as OUT1..8 again.

Simultaneously, the on the opposite side (other control) passed input REAL values
are passed here as a OUT1..8 again.

ID parameter indicates the current identification number of the module instance. If the
configuration of the master and the slave program is differently (incorrectly) that ID
number is passed as a fault in the module NET_VAR_CONTROL.

12.7. NET VAR STRING

Type Function module:

IN_ OUT X: NET_VAR _DATA (NET_VAR data structure)
IN : STRING(string_length) (input string)
OUT : STRING (string_length) (output-string)

OUTPUT ID: BYTE (ID)
v
MET_WAR_STRIMNG
—IMN & 0
—0OUT & B M
—n e & DT
sl

The module NET VAR _STRING is used for bidirectional transmission of STRING
from the master to slave and vice versa. The STRING in the parameters IN will be

203

Version 1.21

Chapter 12. Network Variables

recorded and passed on the other side (control) on the same module at the same
position as OUT parameter.

At the same time the input String on the opposite side of the (other control) is passed
here as a OUT value again.

ID parameter indicates the current identification number of the module instance. If the
configuration of the master and the slave program is differently (incorrectly) that ID
number is passed as a fault in the module NET_VAR_CONTROL.

12.8. NET VAR X8

Type Function module:
IN_ OUT X: NET_VAR DATA (NET _VAR data structure)
INPUT IN_REAL1 : REAL (input)

IN_REALZ2 : REAL (input)
IN_DINTL : DINT (input)
IN_DINT2 : DINT (input)
IN_UDINT1 : DINT (input)
IN_UDINT2 : DINT (input)
IN. DWORDL1 : DINT (input)
IN_ DWORD?2 : DINT (input)
OUTPUT OUT _REAL1 : REAL (ouput)
OUT REAL2 : REAL (output)
OUT DINT1 : DINT (output)
OUT DINT?Z : DINT (output)
OUT _UDINTL : DINT (output)
OUT UDINT2 : DINT (output)
OUT _DWORDL1 : DINT (output)
OUT _DWORD?2 : DINT (output)
ID: BYTE (ID)

The module NET_ VAR X8 is used for bidirectional transmission of each two REAL,
DINT, UINT, DWORD values from the master to slave and vice versa. The signals
IN1..8 are collected and passed to the other side (control) on the same module at the
same position as OUT1..8 again.

204 Version 1.21

Chapter 12. Network Variables

T

MET_WAR_x8
—{IN_REALT COUT_REALT
—{IN_REALZ OUT_REALZ-
—{IN_DINT DOUT_DINTT
—IN_DINTE OUT_DINTZ—
—{IN_LIDINT CUT_LIDINTT —
—{IN_LIDINTZ CUT_LIDINTZ—
—{IN_CWORDN oUT_DWYORDT —
—IN_CW 0RO OUT_DWORDZ—
—{H e IC—
B

Simultaneously, the input data on the opposite side (other control) is passed here as
BUF_OUT again.

ID parameter indicates the current identification number of the module instance. If the
configuration of the master and the slave program is differently (incorrectly) that ID
number is passed as a fault in the module NET_VAR_CONTROL.

205 Version 1.21

Chapter 13. Weather Data

13. Weather Data

13.1. MOON_PHASE

Type Function module:
INPUT XDT: DT (date / time)
SCALE: BYTE (scaling factor)
UPDATE: TIME (update time)
OUTPUT PHASE: BYTE (Scaled value of the lunar phase)

T

b OOMN_FHASE
—=0OT FHASE
—{=CALE
—UPDATE

The module MOON_PHASE is used to calculate the moon phase pf the specified
date. At parameter XDT the current date and time is passed, and always recalculated
after delay of the time parameter "UPDATE". The default value for UPDATE is 1 hour
and the scaling factor is 12.

A moon phase takes about 29.53 days, and goes through the typical conditions of
this new moon to full moon (resp. increasing and decreasing moon). This cycle can
be scaled by SCALE to a desired value between 0 and 255. Example: if 100 is given,
the moon phase is displayed as a percentage.

The real length of a single-moon period, is subject to relatively large variations, and
thjs is not included in the calculation method used. Thus, you can identify deviations
from a few hours. The viewing location (geo-location) is a virtual point in the center of
the earth.

If the moon phase is visualized using graphics, a scaling factor of 12 is used in order
to get to the steps 0-11

See Chapter visualization - Moon Graphics

http://de.wikipedia.org/wiki/Mondphase

206

Version 1.21

http://de.wikipedia.org/wiki/Mondphase

Chapter 13. Weather Data

13.2. YAHOO WEATHER

Type Function module:
IN_OUT IP_C: IP_C (parameterization)
S BUF: NETWORK BUFFER (Transmit data)
R_BUF: NETWORK BUFFER (Receive data)
YW: YAHOO WEATHER (weather data)
INPUT ACTIVATE: BOOL (positive edge starts the query)
UNITS: BOOL (FALSE = Celsius, TRUE = Fahrenheit)
LOCATION: STRING (20) (location specified by LOCATION-ID)
OUTPUT BUSY: BOOL (Query is active)
DONE: BOOL (Query completed without errors)
ERROR_C: DWORD (Error code)
ERROR_T: BYTE (error type)

ey

YAHOO WEATHER
—ACTIVATE BLISY—
—UMNITS DoOME—
—LOCATION ERROR_C—
—IF_C ERROR_TH
—5_BUF & FIP_C
—R_BUF = = 5S_BUF
—T F F_BLF

P Y

The module loads the current weather data for the specified location using
an RSS feed (XML data structure) of http://weather.yahooapis.com down,
analyzes the XML data and provides the essential data processed from the
YAHOO WEATHER data structure. With a positive edge of ACTIVATE, the
query started and process a DNS query with the following HTTP-GET. After
successful receipt of data by XML _READER all elements are processed and
if necessary stored in the data structure in converted form. With UNITS
may still be selected between Fahrenheit and Celsius as a unit. By
specifying the precise LOCATION_ID the location of the weather is
indicated. While the query is active, BUSY = TRUE is passed. After
successful completion of the query DONE = TRUE is shown. If occur in the
query, then this error is reported under ERROR_C in combination with
ERROR T.

ERROR_T:

207

Version 1.21

Chapter 13. Weather Data

Value |Properties

1 The exact meaning of ERROR_C can be read at module DNS_CLIENT

2 The exact meaning of ERROR_C can be read at module HTTP_GET

Find the Location ID of a specific place:

Use your Internet browser the page http://weather.yahoo.com/ and in the
field: "Enter city or zip code" and enter the name of the desired location

and search.
Yahoo! ¢ My Yahoo! ¢ Mail : More ™ Make Y! My Home Page Hew User? Sign Up ¢ Sign In @ Help
-YA_HOO!@' NEWS W7 Search | WEB SEARCH

Weather

ULV U.S5. || Business | World | Entertainment | Sports || Tech || Politics || Science | Health || Travel | Most Popular

Photos Opinion Local News ©Odd News Comics Woeather Full Coverage Video/Audio Ken =8 Site Index

|2l News | Search

i Weather

Channel
weather.com

MORE FROM WEATHER.COM

= Hurricane Watch
= Top 10 Beaches of the World

ter city or zip code:
[Wien

[

= Fighi i The
Fishing F_Jrecast Weathar

= Severe Weather News Channel

« Honeymoaon Planner weather.com

After being selected in the browser window displays the current weather
information of the specified location. In the URL (web link) line is now the
location ID can be seen.

= Vie a - Vienna Weather Forecasts | Maps | Mews - Yahoo! Weather -
@.——x. = |.' wahoo,com | |
ot

Thus, the desired settlement "Wien (Vienna)" returns the Location ID
"551801".
This code must be passed on the module as parameters.

Example of an RSS feed:

<?xml version="1.0" encoding="UTF-8" standalone="yes" 7>
<rss version="2.0" xmiIns:yweather="http://weather.yahooapis.com/ns/rss/1.0"
xmins:geo="http://www.w3.0rg/2003/01/geo/wgs84_pos#">

<channel>

208 Version 1.21

http://weather.yahoo.com/

Chapter 13. Weather Data

<title>Yahoo! Weather - Sunnyvale, CA</title>
<link>http://us.rd.yahoo.com/dailynews/rss/weather/Sunnyvale__CA/
*http://weather.yahoo.com/forecast/94089_f.htmli</link>

<description>Yahoo! Weather for Sunnyvale, CA</description>

<language>en-us</language>

<lastBuildDate>Tue, 29 Nov 2005 3:56 pm PST</lastBuildDate>

<ttI>60</ttl>

<yweather:location city="Sunnyvale" region="CA" country="US"></yweather:location>
<yweather:units temperature="F" distance="mi" pressure="in" speed="mph"></yweather:units>

<yweather:wind chill="57" direction="350" speed="7"></yweather:wind>

<yweather:atmosphere humidity="93" visibility="1609" pressure="30.12" rising="0"></yweather:atmosphere>
<yweather:astronomy sunrise="7:02 am" sunset="4:51 pm"></yweather:astronomy>

<item>
<title>Conditions for Sunnyvale, CA at 3:56 pm PST</title>
<geo:lat>37.39</geo:lat>
<geo:long>-122.03</geo:long>
<link>http://us.rd.yahoo.com/dailynews/rss/weather/
 Sunnyvale__ CA/*
 http://weather.yahoo.com/ forecast/94089_f.html
</link>
<pubDate>Tue, 29 Nov 2005 3:56 pm PST</pubDate>
<yweather:condition text="Mostly Cloudy" code="26" temp="57" date="Tue, 29 Nov 2005 3:56
pm PST"></yweather:condition>
<description><![CDATA[

Current Conditions:

Mostly Cloudy, 57 F<p />
Forecast:

Tue - Mostly Cloudy. High: 62 Low: 45

Wed - Mostly Cloudy. High: 60 Low: 52

Thu - Rain. High: 61 Low: 46

Full
Forecast at Yahoo! Weather

(provided by The Weather Channel)
]]>
</description>

<yweather:forecast day="Tue" date="29 Nov 2005" low="45" high="62" text="Mostly Cloudy"

209

Version 1.21

Chapter 13. Weather Data

code="27"></yweather:forecast>
<yweather:forecast day="Wed" date="30 Nov 2005" low="52" high="60" text="Mostly Cloudy"

code="28"></yweather:forecast>

</item>
</channel>

</rss>

The XML data the required elements are processed and stored in the
YAHOO_ WEATHER data structure.

13.3. YAHOO WEATHER_DESC_DE

Type Function module:
IN_ OUT YW: YAHOO WEATHER DATA (Weather data)
INPUT ACTIVATE: BOOL (positive edge starts the query)

T
TAHOO WEATHER_DESC _GE
ACTHATE B 7y
W =

The module replaces the original English texts by German weather
descriptions. Following a positive edge at ACTIVATE the elements (texts) in
the YAHOO WEATHER DATA data structure is replaced. After querying the
weather data using YAHOO_WEATHER this module should be called
subsequently. It is simply the parameter DONE from the module
YAHOO_WEATHER that is interconnected with ACTIVATE.

The following elements will be adapted:
YW.CUR_CONDITIONS TEXT
YW.FORCAST TODAY_TEXT
YW.FORCAST TOMORROW _TEXT

210

Version 1.21

Chapter 13. Weather Data

13.4. YAHOO WEATHER _ICON_OSCAT

Type Function module:
IN_ OUT YW: YAHOO WEATHER DATA (Weather data)
INPUT ACTIVATE: BOOL (positive edge starts the query)

T

YAHOO WEATHER_ICOM_OSCAT
ACTIWVATE B
W B

The module replaces the original vendor-specific numbers on the weather
icons by OSCAT standard icon numbers. Following a positive edge at
ACTIVATE the elements (icon numbers) in the YAHOO WEATHER DATA data
structure is replaced. After querying the weather data using

YAHOO WEATHER this module should be called subsequently. It is simply
the parameter DONE from the module YAHOO _WEATHER that is
interconnected with ACTIVATE.

The following elements will be adapted:
YW.CUR_CONDITIONS_ICON
YW.FORCAST _TODAY_ICON
YW.FORCAST TOMORROW _ICON

13.5. WORLD_WEATHER

Type Function module:

IN_ OUT IP_C: IP_C (parameterization)
S BUF: NETWORK BUFFER (Transmit data)
R _BUF: NETWORK BUFFER (Receive data)
WW: WORLD WEATHER_DATA (Weather data)

INPUT ACTIVATE: BOOL (positive edge starts the query)
LATITUDE: REAL (latitude of the reference location)
LONGITUDE : REAL (longitude of the reference location)

211

Version 1.21

Chapter 13. Weather Data

KEY: STRING (30) (API-Key)
OUTPUT BUSY: BOOL (Query is active)
DONE: BOOL (Query completed without errors)
ERROR_C: DWORD (Error code)
ERROR_T: BYTE (error type)

T

WORLD WEATHER
—ACTWATE BUSY—
—LATITUDE DOMNE
—LOMNGITUDE ERROR_CH
—{kEY ERROR_TH
—HFP_Ce e IF_C
—{5_BUF & 5 _BUF
—{F_BUF & = R_BUF
—{Wh b B WY

The module loads the current weather data for the specified location of
http://worldweather.com down, analyzes the data and stores the essential
data processed in the WORLD_WEATHER_DATA data structure.

Following values are stored from the current day.

Observation time (UTC) Temperature (°C), Unique Weather code

Weather description text, wind speed in miles per hour, wind speed in kilometer per
hour, wind direction in degree, 16-point wind direction compass, precipitation amount
in millimeter, Humidity (%), Visibility (km) Atmospheric pressure in milibars

, Cloud cover (%)

From the current day and the next four days the following values
are stored.

Date For which the weather is forecasted,

Day and night temperature in °C (Celsius) and °F (Fahrenheit)

Wind speed in mph (miles per hour) and kmph (kilometers per hour)
16-point compass wind direction, A unique weather condition code;
Weather description text , Precipitation Amount (millimetre)

With a positive edge of ACTIVATE, the query started and process a DNS
query with the following HTTP-GET. After successful receiving all data
elements are processed and if necessary stored in the data structure in
converted form. By the parameters of latitude and longitude the exact
place (geographical position) of the weather is indicated. While the query
is active, BUSY = TRUE is passed. After successful completion of the query

212

Version 1.21

Chapter 13. Weather Data

DONE = TRUE is shown. If an error occurs during the query it is reported in
ERROR_C in combination with ERROR _T.

ERROR_T:

Value |Properties

1 The exact meaning of ERROR_C can be read at module DNS_CLIENT

2 The exact meaning of ERROR_C can be read at module HTTP_GET

Creating a new API KEY:

Use your Internet browser and call the page http://www.worldweatheronline.-
com, call the "Free sign up" registration dialog, and fill out the required fields. After
registering, an email is sent, in turn, has to be confirmed, and subsequently secon ad
e-mail is sent with the personal API key. This APl Key must be passed to the module-
KEY API parameters.

Weather API

wWorld WWeather QOnline offers Free and Fremium YWeather AFL to retreive quality weather forecast in =ML,
CEY, TABR or JSOMN format. Whether vou program in C# or VB, PHP, Pearl or JAaVA, our HTTF REST based
YWeather APl is easy o use. Check out ourWieather APl Comparison chartto find out mare.

Premium Weather API

Chverview

Features

Local Weather API

Ski Resort AR

Suring or Marine AP
Histarical/Fast YWeather AR
ranthly Climate Averages AP
FAQ

o e e

Determine Latitude and longitude of a specific place:

Use your Internet browser to access http://www.mygeoposition.com/ page,
and enter the name of the desired location and search the location using
"calculate the spatial data" . Then the desired location is shown on the
map, including the latitude and longitude needed in decimal notation. The
determined position has to be passed to the block parameters, latitude
and longitude.

213 Version 1.21

http://www.worldweatheronline.com/
http://www.worldweatheronline.com/

Chapter 13. Weather Data

Suppaort us & franslate: Geocoding » Geotags » Geo-Metatags « KML (Google Earth™)
Tes MyGGOPOSItIOI'I com
wien lgenau | Geodaten berechnen |

Info || Karte ” Geadaten ” Geo-Tags/-Metatags ” KML H Karte verlinken H Sprachen ” Impressum ‘

£ - - - [Karte [setet_| s
i i Karte Sate it Hyhri
. ST e Breitengrad: 48.200206 (487 12' 33, 14”N X/"(mme:]
s HJ : = o Langengrad: 16.372775 {16% 22' 22.00" O} ! : j

i fact
; 2 - Warsthieben Sie den Marker oder Klicken Sie auf |
& o - dieKarte, um die Position zu korrigisren!

e o o ;
i emals < Lo d ”
G s ; 3
Otekng i ‘ %% i
Tt T InnereS!adI ik
S50 m e N FrEh :
E,?‘m fod 0 Newau i ' oy, Vi
- B ti ! nLands‘craﬁe m '- A
x : Penzmﬂ RudulrshecmFLhmaus sl ; i \M’{'*’é’w 4 j/’
s iy ot 2 e / 1
-S'mah_..,,lm.ersu _h - 1§ : interer . w{w
!l- Bl -5 e Margg.relgn 7
: ': Hietzing - B Hundsturm - m w # ;
. \'Ezi o ME”EM schanbrumer. g i 221 B H“\.
|2|<m : Jichiotpark g i RS ‘? ; ?’ Kartenda@h@?ﬂlﬂ

13.6. WORLD_ WEATHER_DESC_DE

Type Function module:
IN_ OUT WW: WORLD WEATHER_DATA (Weather data)
INPUT ACTIVATE: BOOL (positive edge starts the query)

Y
WORLD WEATHER_DESC_GE
—|ACTIVATE B W
LN =

The module replaces the original English texts by German weather
descriptions. Following a positive edge at ACTIVATE the elements (texts) in
the WORLD_WEATHER DATA data structure is replaced. After querying the

214 Version 1.21

Chapter 13. Weather Data

weather data using WORLD_WEATHER this module should be called
subsequently. It is simply the parameter DONE from the module
WORLD_WEATHER that is interconnected with ACTIVATE.

The following elements will be adapted:
WW.WORLD _WEATHER _CUR.WEATHER_DESC
WW.WORLD _WEATHER _DAY[0..4].WEATHER DESC

13.7. WORLD_WEATHER_ICON_OSCAT

Type Function module:
IN_ OUT WW: WORLD WEATHER_DATA (Weather data)
INPUT ACTIVATE: BOOL (positive edge starts the query)

T
WORLD WWEATHER_ICOM_OSCAT
ACTHWATE B iy
Wi b

The module replaces the original vendor-specific numbers on the weather
icons by OSCAT standard icon numbers. Following a positive edge at
ACTIVATE the elements (icon numbers) in the WORLD_WEATHER_DATA
data structure is replaced. After querying the weather data using
WORLD_WEATHER this module should be called subsequently. It is simply
the parameter DONE from the module WORLD_WEATHER that is
interconnected with ACTIVATE.

The following elements will be adapted:
WW.WORLD _WEATHER_CUR.WEATHER ICON
WW.WORLD_WEATHER_DAY[0..4].WEATHER ICON

215 Version 1.21

Chapter 14. Visualization

14. Visualization

14.1. VISU-WEATHER

With the weather module the weather data in the corresponding data
structures are provided. By default, each service provider delivers with its
own code or weather weather icons. Since these differ in some totally, the-
re are separate collections for each weather element.

With the modules

yahoo_weather_icon_oscat.odt
world_weather_icon_oscat.odt

different weather icons and descriptive data can be reduced to a common
denominator (OSCAT standard) so that a single ICON setup is sufficient.

216 Version 1.21

Chapter 14. Visualization

SETUP: WEATHER_OSCAT_1

03.PMG 04.PMG

B

09.PMG

-
Eod
h=]
=
(]

217 Version 1.21

Chapter 14. Visualization

SETUP: WEATHER_YAHOO_1

? | | ? D B
00.png § 2 03.png 05png 06png
o ¥ < D D

'
\
[
|
i
|

=]
Py
i
=]
=]
&
=
=]
=]
z I
=]
=]
—
=)
e
=]
=]

=
o
o
- 1
V=]
(A
]
=
-
=]

B
-+

R HE TR T
®

B
B

%
LY
o
I
o

$1@5 P

i
-
=
w0
=
=
=]
V=]
v
o
=
1=]

B
LT
=]
=]
-ﬂ
=]
[I5]
o)
=1
e,
=]
=]
oY)
=
=
=]
]
=
=]
=]
oy
[y
iy
=]
=]

b
L,
&
$
R

L
b
=
3
e
L
o
=
3
[
L
=l
=
3
=
e
o
e
=
[
L
ral
=
3
s
3
e
=i
i
=
3
0

b
B
>
D
°=J

.
P
-
=
(V=]
&
i
=
g
=
=
-
=
(1=}
.
Ln
=
=
V=]
=
=
V]
Fo.
|
=
=
[1=]
5
-
=
(V=]

218 Version 1.21

Chapter 14. Visualization

SETUP: WEATHER_WORLD_1

<D
Ejd.png d.SI.png

.E.Ié.png. .03 pnyg Ejﬁ.png -U-?.png
09.png 10.png 1l.png 12.png 13.png 14.png
15.png 16. png. 17.png 1&8.png 19.png 20.png 2.png

24, phg 25.png 26.png 21.png 28.png

14.2. Moon Graphics

SETUP: MOON_1

219 Version 1.21

Chapter 14. Visualization

10.pnyg 11.png

14.3. Wind charts

SETUP: WIND_1

220 Version 1.21

Chapter 14.

Visualization

r.png

o.png

s.png

wLpng

o

Ane.png

osC.png

sEWLpNg

_.-" '

wnw.png

no.png

so.png

swL.png

nw.png

oho.png

s50.pNg

wsw.png

\),

MW,

221

Version 1.21

Chapter 14. Visualization

Index of Modules

BASE64 DECODE STR......covviiiiiiiiieeieeeeennn 72 LOG MSG.... i 111
BASE64 DECODE _STREAM........ccccveevniennnns 73 LOG _VIEWPORT ..ot 111
BASE64 ENCODE _STR....cccivviiiiiiiieieeeenes 74 MB_CLIENT .o 112
BASE64 ENCODE_STREAM........cccevvnvvvnnnnn. 74 MB _SERVER......coccoiiiiiiiiicea 116
CSV_PARSER BUF.....cciiiiiiiiiiieeeeee, 147 MB VMAP.....o e 118
CSV_PARSER FILE......cociiiiiiiiiiiiee, 149 MD5 _AUX .ot 79
DLOG BOOL...uiiiiiiiiiiiiieiciceeeeeeee e 48 MD5 STR...coiii e 80
DLOG DATA. ...t 16 MD5 STREAM.....oivviiiiiiiieeiei e 80
DLOG DINT ..ot e 49 MD5 TO STRH..ceiiiiiiii e 82
DLOG DT ..ot 50 MOON_PHASE......coiiiii e 206
DLOG FILE_ TO FTP..iviiiiiiiieieeeeeeeeee, 63 NET VAR BOOLS.....ccceiviiviieiiieeeeeeen 200
DLOG _FILE_ TO SMTP....oieiiiiiiiiieeeeeieeene, 66 NET VAR BUFFER......c.ccoiiiiiiiiiieeen, 201
DLOG REAL....ieiieieiiceiec e 51 NET VAR CONTROL.....ccviiiriiiiieiieeeeeennn 199
DLOG_STORE_FILE_CSV....cceviviiiiiiiiieeen, 52 NET VAR DATA.....cooiii e 25
DLOG STORE RRD....cciviiiiieiiiieieeneeeeen 54 NET VAR DWORDS........cocoviiiiiiiiinieeen, 202
DLOG _STRING.....ctieiiiiiiieeeeneee e 52 NET VAR REALS.......ccooiiiiiiieiieeeeeeen, 202
DNS _CLIENT e e e e 89 NET VAR STRING......coviiiiiiiiiie e 203
DNS DYN..ooiiiiiieeee e 92 NET VAR X8...oiiiiiiiiiiiceeeeee 204
DNS REV _CLIENT ... 90 NETWORK VERSION.......covviiiiiiiiiiieeeeee, 35
ELEMENT _COUNT.....ccuviiiiiiiiieeeeeeeeees 34 PRINT SF.orii e 121
ELEMENT GET....ovviiiiiieiee e 34 PRINTF DATA. ..o 25
FILE_ BLOCK.....ceiiiiiiiiiiiceee e 152 RC4_CRYPT _STREAM......ccovvviiiiiiiiiiiienn, 82
FILE_PATH DATA. ..., 22 READ HTT TP 122
FILE PATH SPLIT....cieiiiiiiiieiieeeceeeees 153 SHAL STR..iiiiiii e 33
FILE_ SERVER.....cccuiiiiieiiiiieeeeee e 154 SHAL STREAM....coioiiiiiiii e 84
FILE_SERVER DATA.....ciiiiiiiiiieeeeeen 22 SHAL TO STRH...oiiiiiiiiiiiiieee e 85
FTP _CLIENT ..o 94 SMTP CLIENT ..., 123
GET WAN IP..eiii e 96 SNTP _CLIENT ...t 127
HTML DECODE.......oic i 75 SNTP_SERVER......coiiiiieeee e 128
HTML ENCODE.......c.oc i 76 SPIDER _ACCESS........ciiiiiiieee, 129
HTTP GET..ooii e 98 STRING TO URL...iviiiiiiiiiiiieieeneneeeee 86
INI_PARSER BUF.....ccccviiiiiiiiiiiceeeeeen, 161 SYS LOG.. ittt e 131
INI_PARSER FILE.......cicviiiiiiiiiieeiee e 164 TELNET LOG.....oiiiiiiiieieeeeeee e 135
P s 23 TELNET PRINT ..o 137
IP_CONTROL....ctviiiiiiiieieeeeeeeeeee e 101 TELNET VISION.....ooiiiiiii e 167
IP_CONTROL2....ccuiiiiiiieiieeieeeeee e 107 TN_FRAMEWORK.....c.cciviiiiiiiiiiiieeeeees 173
IP_FIFO. e 108 TN_INPUT CONTROL....ccceiiiiiiiiniineeeeeeneen 174
IP_FIFO _DATA. ... 24 TN_INPUT EDIT LINE....cccoiiiiiiiieieeen, 174
IP2GEO...c i, 22,99 TN_INPUT _MENU BAR.....cccoiiiiiiiieiens 176
IPA CHECK.......iiiiiiiii e 77 TN_INPUT_MENU POPUP..........ocvvnveneannnn. 178
IP4 DECODE.......oieiieiiieeeeeeee e 77 TN_INPUT _SELECT POPUP.......ccccevvinnnen. 178
IP4 TO _STRING......cieiiiiiie e 78 TN_INPUT _SELECT TEXT.....coviiiiiiiiiiiennnns 180
IRTRANS DECODE.........civiiiiiiieeneeeeea 36 TN RECEIVE......ooiiii e 182
IRTRANS RCV _L...ccviiiiiiiiiiiiiiieieeeeeeeeeeeee 37 TN_SC ADD _SHADOW.....ccoovevieieenneeneennn, 184
IRTRANS RCV 4. .o 39 TN _SC AREA RESTORE........ccovviiiinennnn, 184
IRTRANS RCV 8.t 39 TN_SC AREA SAVE......ccoiiiiiiiiiiieas 185
IRTRANS SERVER......cociiiiiiiiiiiieeee e, 40 TN SC BOX..iiiiiiiiiiiiiee e, 186
IRTRANS SND _1..ceiiiiiiiiiiiiiiieeeeneneneene e 42 TN SC FILL..iiiiiiiiiiiiee e 187
IRTRANS SND 4. ..o e 43 TN _SC LINE.....coiiii e 188
IRTRANS SND _8...oiieiiiiiiiiieeeee e 44 TN_SC READ ATTR....ccoiiiiiiiiiiiieiieeeenenn 190
IS P4 ... 78 TN _SC READ CHAR....cooiiiiieieeeeeees 190
IS URLCHR....coiiiiiiicie e 79 TN_SC SHADOW ATTR....iiiiiiiiiiiieieeenennns 191
LOG_CONTROL....uiiuieiceiieenieeeeeeeeeeeeeees 24 TN _SC VIEWPORT.....ciieiiieiieeieeeeee e 191

222

Version 1.21

Chapter 14. Visualization

TN_SC WRITE....coiiiiiiee e 192 us _TN_INPUT _CONTROL DATA........c.ocevveen. 18
TN _SC WRITE _ATTR...ccviiiiiiiieeeees 193 uUS TN MENU....ccoiiiiii e, 19
TN_SC WRITE C.ovvvrieieeveenee e 193 us TN_MENU POPUP.......cccoviiiiiiiiiniens 20
TN_SC WRITE_ CHAR......coiiiiieeee, 194 us TN _SCREEN......ccoiiiiiiiiiieeeeeeeeeee 21
TN_SC WRITE_EOS......coiiiiiiiiieee, 195 VMAP DATA....o e, 26
TN _SC XY ERROR.....cciviiiiiiiieeee, 195 WORLD WEATHER......ciiiiieieeeees 211
TN_SC XY2 ERROR......ceviiiiiiiiiiieceeens 196 WORLD_WEATHER DATA.....cccciiiiiieiiieieenns 28
TN_SEND ROWS.....coiiiiiieeeeee 183 WORLD _WEATHER DESC DE.................... 214
UNI_CIRCULAR BUFFER........ccoiiiiiiiiiens 69 WORLD _WEATHER ICON_OSCAT.............. 215
UNI_CIRCULAR BUFFER DATA..........ovenvene. 26 XML CONTROL...ccuiiiiiiiiiiieieeeeeee e 27
URL . et 17 XML READER......ciiiee e, 140
URL DECODE........oiiiieieieee e 87 YAHOO WEATHER.......ccoiiiiiee, 207
URL ENCODE.......ct it e 87 YAHOO_WEATHER DATA.......ccooiiiiiiiiiees 29
URL TO STRING.....coiiiiiiiieieeeeeeeeees 87 YAHOO WEATHER DESC DE.................... 210
US_ LOG _VIEWPORT......oceiiiiiiieieceeieees 16 YAHOO WEATHER ICON_OSCAT............... 211
us_TN_INPUT _CONTROL.......coccveieiiianenne. 17

223

Version 1.21

	1. Legal
	1.1. Disclaimer
	1.2. License Terms
	1.3. Intended Use
	1.4. Registered trademarks
	1.5. Other

	2. Introduction
	2.1. Objectives
	2.2. Conventions
	2.3. Test environment and conditions
	2.4. Releases
	2.5. Support

	3. Demo-Programs
	3.1. Demo programs

	4. Data Types of the NETWORK-Library
	4.1. DLOG_DATA
	4.2. us_LOG_VIEWPORT
	4.3. URL
	4.4. us_TN_INPUT_CONTROL
	4.5. us_TN_INPUT_CONTROL_DATA
	4.6. us_TN_MENU
	4.7. us_TN_MENU_POPUP
	4.8. us_TN_SCREEN
	4.9. FILE_PATH_DATA
	4.10. FILE_SERVER_DATA
	4.11. IP2GEO
	4.12. IP_C
	4.13. IP_FIFO_DATA
	4.14. LOG_CONTROL
	4.15. NET_VAR_DATA
	4.16. PRINTF_DATA
	4.17. UNI_CIRCULAR_BUFFER_DATA
	4.18. VMAP_DATA
	4.19. XML_CONTROL
	4.20. WORLD_WEATHER_DATA
	4.21. YAHOO_WEATHER_DATA

	5. Other Functions
	5.1. ELEMENT_COUNT
	5.2. ELEMENT_GET
	5.3. NETWORK_VERSION

	6. Device Driver
	6.1. IRTRANS
	6.2. IRTRANS_DECODE
	6.3. IRTRANS_RCV_1
	6.4. IRTRANS_RCV_4
	6.5. IRTRANS_RCV_8
	6.6. IRTRANS_SERVER
	6.7. IRTRANS_SND_1
	6.8. IRTRANS_SND_4
	6.9. IRTRANS_SND_8

	7. Data Logger
	7.1. DATA-LOGGER
	7.2. DLOG_BOOL
	7.3. DLOG_DINT
	7.4. DLOG_DT
	7.5. DLOG_REAL
	7.6. DLOG_STRING
	7.7. DLOG_STORE_FILE_CSV
	7.8. DLOG_STORE_RRD
	7.9. DLOG_FILE_TO_FTP
	7.10. DLOG_FILE_TO_SMTP
	7.11. UNI_CIRCULAR_BUFFER

	8. Converter
	8.1. BASE64
	8.2. BASE64_DECODE_STR
	8.3. BASE64_DECODE_STREAM
	8.4. BASE64_ENCODE_STR
	8.5. BASE64_ENCODE_STREAM
	8.6. HTML_DECODE
	8.7. HTML_ENCODE
	8.8. IP4_CHECK
	8.9. IP4_DECODE
	8.10. IP4_TO_STRING
	8.11. IS_IP4
	8.12. IS_URLCHR
	8.13. MD5_AUX
	8.14. MD5_STR
	8.15. MD5_STREAM
	8.16. MD5_TO_STRH
	8.17. RC4_CRYPT_STREAM
	8.18. SHA1_STR
	8.19. SHA1_STREAM
	8.20. SHA1_TO_STRH
	8.21. STRING_TO_URL
	8.22. URL_DECODE
	8.23. URL_ENCODE
	8.24. URL_TO_STRING

	9. Network and Communication
	9.1. DNS_CLIENT
	9.2. DNS_REV_CLIENT
	9.3. DNS_DYN
	9.4. FTP_CLIENT
	9.5. GET_WAN_IP
	9.6. HTTP_GET
	9.7. IP2GEO
	9.8. IP_CONTROL
	9.9. IP_CONTROL2
	9.10. IP_FIFO
	9.11. LOG_MSG
	9.12. LOG_VIEWPORT
	9.13. MB_CLIENT (OPEN MODBUS)
	9.14. MB_SERVER (OPEN-MODBUS)
	9.15. MB_VMAP
	9.16. PRINT_SF
	9.17. READ_HTTP
	9.18. SMTP_CLIENT
	9.19. SNTP_CLIENT
	9.20. SNTP_SERVER
	9.21. SPIDER_ACCESS
	9.22. SYS_LOG
	9.23. TELNET_LOG
	9.24. TELNET_PRINT
	9.25. XML_READER

	10. File-System
	10.1. CSV_PARSER_BUF
	10.2. CSV_PARSER_FILE
	10.3. FILE_BLOCK
	10.4. FILE_PATH_SPLIT
	10.5. FILE_SERVER
	10.6. INI-DATEIEN
	10.7. INI_PARSER_BUF
	10.8. INI_PARSER_FILE

	11. Telnet-Vision
	11.1. TELNET_VISION
	11.2. TN_FRAMEWORK
	11.3. TN_INPUT_CONTROL
	11.4. TN_INPUT_EDIT_LINE
	11.5. TN_INPUT_MENU_BAR
	11.6. TN_INPUT_MENU_POPUP
	11.7. TN_INPUT_SELECT_POPUP
	11.8. TN_INPUT_SELECT_TEXT
	11.9. TN_RECEIVE
	11.10. TN_SEND_ROWS
	11.11. TN_SC_ADD_SHADOW
	11.12. TN_SC_AREA_RESTORE
	11.13. TN_SC_AREA_SAVE
	11.14. TN_SC_BOX
	11.15. TN_SC_FILL
	11.16. TN_SC_LINE
	11.17. TN_SC_READ_ATTR
	11.18. TN_SC_READ_CHAR
	11.19. TN_SC_SHADOW_ATTR
	11.20. TN_SC_VIEWPORT
	11.21. TN_SC_WRITE
	11.22. TN_SC_WRITE_ATTR
	11.23. TN_SC_WRITE_C
	11.24. TN_SC_WRITE_CHAR
	11.25. TN_SC_WRITE_EOS
	11.26. TN_SC_XY_ERROR
	11.27. TN_SC_XY2_ERROR

	12. Network Variables
	12.1. NET_VAR
	12.2. NET_VAR_CONTROL
	12.3. NET_VAR_BOOL8
	12.4. NET_VAR_BUFFER
	12.5. NET_VAR_DWORD8
	12.6. NET_VAR_REAL8
	12.7. NET_VAR_STRING
	12.8. NET_VAR_X8

	13. Weather Data
	13.1. MOON_PHASE
	13.2. YAHOO_WEATHER
	13.3. YAHOO_WEATHER_DESC_DE
	13.4. YAHOO_WEATHER_ICON_OSCAT
	13.5. WORLD_WEATHER
	13.6. WORLD_WEATHER_DESC_DE
	13.7. WORLD_WEATHER_ICON_OSCAT

	14. Visualization
	14.1. VISU-WEATHER
	14.2. Moon Graphics
	14.3. Wind charts

